DRAFT

National Education Policy-2020

Common Minimum Syllabus for Uttarakhand State Universities and Colleges

Four Year Undergraduate Programme-FYUP/Honours Programme/Master in Science

PROPOSED STRUCTURE FOR FYUP/MASTER'S PHYSICS SYLLABUS

DEPARTMENT OF PHYSICS

Year	Sem.	Course Code	Paper Title	Theory/ Practical	Credit
			Undergraduate Certificate		
	T	DCC A1	Course in Physics Mechanics and Theory of Oscillations	Theorem	2
	Ι	DSC A1	Theory	3	
		DSC Pr1	Mechanics and Theory of Oscillations Lab	Practical	1
LR		GE P1	Basic Physics I	Theory +	3+1
YEA				Tutorial	
FIRS TYEAR		SEC P1	Basic Instrumentation Skills I	Theory	02
FIR	II	DSC A2	Electricity and Magnetism	Theory	3
		DSC Pr2	Electricity and Magnetism Lab	Practical	1
		GE P2	Basic Physics II	Theory	3+1
		0212		+	
			Denie Instance estation (1-11) II	Tutorial	02
		SEC P2	Basic Instrumentation Skills II	Theory	02
			Diploma in Applied Physics		
	III	DSC A3	Thermodynamics and Statistical Physics	Theory	3
		DSC Pr3	Thermodynamics and Statistical Physics Lab	Practical	1
		DSE A1	Waves and Acoustics	Theory	3
		DSE Pr1	Waves and Acoustics Lab	Practical	1
SECOND YEAR		GE P3	Fundamental Mechanics	Theory +	3+1
EA				Tutorial	(0.0)
SE		SEC P3	Basic Instrumentation Skills III	Theory	(02)
	IV	DSC A4	Optics	Theory	3
		DSC Pr4	Optics Lab	Practical	1
		DSE A2	Solid State and Statistical Physics	Theory	3
		DSE Pr2	Solid State and Statistical Physics Lab	Practical	1
		GE P4	Basic Electricity and Magnetism	Theory	3+1
				+	
		SEC D4	Basic Instrumentation Skills IV	Tutorial Theory	(02)
		SEC P4		THEOLY	(02)
	V		Bachelor of Science	Theorem	3
	V	DSC A5	Modern Physics	Theory	3
THIRD YEAR		DSC Pr5	Modern Physics Lab	Practical	1
		DSE A3	Basic Quantum Mechanics	Theory	3
		DSE Pr3	Basic Quantum Mechanics Lab	Practical	1
		GE P5	Basics of Heat Transfer	Theory	3+1
		CE 15		+	
				Tutorial	1

1	1				(0.0)
		SEC P5	Advanced Instrumentation and Measurement Techniques-I Or	Theory	(02)
			OI OI		
			Electrical circuit network Skills - I		
		IAPC	IAPC	-	04
	VI	DSC A6	Electronics	Theory	3
		DSC Pr6	Electronics Lab	Practical	1
		DSE A4	Special Theory of Relativity	Theory	3
		DSE Pr4	Special Theory of Relativity Lab	Practical	1
		DSE A5	Research Methodology in Physics	Theory + Tutorial	3+1
		GE P6	Basics of Digital Electronics	Theory + Tutorial	3+1
		SEC P6	Advanced Instrumentation and Measurement Techniques-II or	Theory	2
			Electrical circuit network Skills – II		
		IAPC	IAPC	-	04

	Semes	ster-wise List	and Titles of the Papers for M.Sc. De	e <mark>gree in Phy</mark> si	cs
Year	Sem.	Course Code	Paper Title	Theory/ Practical	Credits
			Major in Physics		
	VII	DSC A7	Mathematical Physics	Theory	3
		DSE A6	Classical Mechanics	Theory	3
		DSE A7	Quantum Mechanics	Theory	3
		DSE A8	Communication Electronics	Theory	3
			Practical	Practical	4
SAR		DSE A5	Research Methodology in Physics	Theory + Tutorial	3+1
TH YI		GE P7	Renewable Energy Resources	Theory + Tutorial	3+1
FOURTH YEAR		GE P8	Radiation Physics	Theory + Tutorial	3+1
Ι			Dissertation		(06)
	VIII	DSC A8	Electrodynamics	Theory	3
		DSE A9	Atomic and Molecular Physics	Theory	3
		DSE A10	Nuclear Physics	Theory	4
		DSE A11	Elementary Particle Physics	Theory	3
			Practical	Practical	4
		GE P9	Physics of Weather and Climate	Theory +	3+1

1				Tutorial	
		CE D 10	Digital Electronics and Computer		3+1
		GE P 10	Digital Electronics and Computer Architecture	Theory + Tutorial	3+1
			Dissertation		(06)
			Master in Physics		
	IX	DSC A9	Advanced Quantum Mechanics	Theory	3
		DSE A12	Plasma Physics	Theory	3
		DSE A13	Advanced Electronics-I/Astrophysics-I/ High Energy-I/Spectroscopy- I/Condensed Matter Physics-I	Theory	3
		DSE A14	Advanced Electronics-II/Astrophysics- II/ High Energy-II/Spectroscopy-II/ Condensed Matter Physics-II	Theory	3
			Practical	Practical	4
~		GE P11	BIO physics/ Photonics-I	Theory + Tutorial	3+1
FIFTH YEAR		GE P 12	Nanoscience and Nanotechnology	Theory + Tutorial	3+1
HT'HI			Dissertation		(06)
H	Х	DSC A10	Solid State Physics	Theory	3
		DSE A15	Statistical Physics	Theory	3
		DSE A16	Advanced Electronics-III/Astrophysics- III/ High Energy-III/Spectroscopy-III/ Condensed Matter Physics-I	Theory	3
		DSE A17	Advanced Electronics-IV/Astrophysics- IV/ High Energy-IV/Spectroscopy-IV/ Condensed Matter Physics-II	Theory	3
			Practical	Practical	4
		GE P13	Medical Physics/ Photonics-II	Theory + Tutorial	3+1
		GE P 14	Basics of Astrophysics	Theory + Tutorial	3+1
			Dissertation		(06)

Abbreviations-DSC-Discipline Specific Course; DSE- Discipline Specific Electives; GE-Generic Electives

Programme outcomes (POs):

Students having Degree in B.Sc. (with Physics) should have knowledge of different concepts and fundamentals of Physics and ability to apply this knowledge in various fields of academics and industry. They may pursue their future career in the field of academics, research and industry.

PO 1	1. Competence in the methods and techniques of calculations using Mechanics.
	2. Students are expected to have hands-on experience to apply
	the theoretical knowledge tosolve practical problems.
PO2	1. Students are expected to have deep understanding of
	electricity and magnetism.
	2. Student should be able to make basic electrical circuits and
	handle electrical instruments.
PO 3	1. Competence in the concepts of Thermodynamics.
	2. Students are expected to have hands on experience in
	Thermal Physics Experiments.
PO 4	1. Knowledge of different concepts in Geometrical Optics.
	2. Students are expected to have hands on experience of
	Experiments of GeometricalOptics
PO 5	1. Knowledge of basic concepts of optical instruments with
	their applications in technology
	2. Students are expected to have an insight in handling
	electronic instruments.
PO 6	1. Comprehensive knowledge of Analog & Digital Principles
	and Applications.
	2. Learn the integrated approach to analog electronic circuitry
	and digital electronics forR&D.
	Programme specific outcomes (PSOs):
	UG I Year /Undergraduate
	Certificate Course in Physics

After completing this certificate course, the student should have:

- 1. Acquired the basic knowledge of Mechanics, Electricity and Magnetism.
- 2. Hands-on experience to apply the theoretical knowledge to solve practical problems of basic physical phenomena. Student should be able to carry out experiments to understand the laws and concepts of Physics.
- 3. An insight in understanding electrical circuits and in handling electrical instruments.

Programme specific outcomes (PSOs):

UG II Year/ (Diploma in Applied Physics)

After completing this diploma course, the student should have

- 1. Knowledge of different concepts in Thermodynamics, and Geometrical Optics.
- 2. Knowledge of different aspects of Thermal Physics which serves as a basis for many physical systems used in industrial applications and deals with the physics and technology of Engines and Refrigerators.
- 3. A deeper insight in Ray Optics to understand the Physics of many optical instruments which are widely used in research and Industry, Optoelectronics, IT and communication devices, and in industrial instrumentation.

 Knowledge of technology. 	basic concepts of optical instruments with their applications in
	Programme specific outcomes (PSOs):
	UG III Year / Bachelor of Science
After completing	this degree course, the student should have:
PSO 1	 Knowledge of Mechanics and basic properties of matter. The course will empower him to apply his theoretical knowledge in various physical phenomena that occur in day-to-day life and he can use this scientific knowledge for the betterment of the society.
PSO2	 Understanding of basic concepts related to Electricity and Magnetism. Students should be proficient in designing and handling different electrical circuits
PSO3	1. Expertise in different aspects of Thermal Physics which serves as a basis for many physical systems used in industrial applications and deals with the physics and technology of Engines and Refrigerators.
PSO4	1. Proficient in the field of Optics which will increase his demand in research and industrial establishments engaged in activities involving optical instruments.
PSO5	1. Basic knowledge in the field of Modern physics, which have utmost importance at both undergraduate and graduate level.
PSO6	 Comprehensive knowledge of Analog & Digital Principles and Applications. Learn the integrated approach to analog electronic circuitry and digital electronics for R&D.

SEMESTER-I

UNDERGRADUATE CERTIFICATE COURSE IN PHYSICS

		DISCIPI	LINE SPECI	FIC COURS	E (DSC A1)		
Programme: <i>U</i>	U ndergraduate	Certificate	Course in Ph	ysics	Yea	r: I Semest	er: I
Subject: Phys	ics						
Course Title	& Credits	Credit d	istribution of	the course	Eligibility	Pre-requi	isite of the
Code		Lecture	Tutorial	Practical	Criteria	со	urse
DSC A1: Mechanics an Theory of Oscillations	nd 4	3	0	1	12th pass	Physics ar Mathemat	
Course Outco	mes						
1. Understandin	g of Vector A	lgebra and V	ector Calculu	18.			
2. Understandin	g the physical	interpretatio	on of gradient	, divergence a	and curl.		
3. Study of grav	vitational field	and potentia	and understa	anding of Kej	pler's laws of l	Planetary mo	tion.
4. Understandi	ng of different	frames of re	eferences and	conservation	laws.		
5. Understand t different bodies	the dynamics of and its applied	of rigid body cations.	and concept	of moment of	f inertia. Study	of moment	of inertia of
6. Study the production an	operties of m d its application	atter, respon ons.	use of the cla	ssical system	ns to external	forces and t	their elastic
7. Comprehene applications.	d the dynamic	s of Fluid an	d concept of	viscosity and	l surface tensio	on along with	n its
8. Comprehens	sive study of t	he theory of	oscillations.				
		<u>THE</u>	ORY COMP	<u>ONENT</u>			
Unit	Unit Topic						No. of Lectures
Unit IVectors Algebra Vector algebra. Scalar and vector products, scalar and vector triple products. Derivative of a vector with respect to a parameter, Line, surface and volume integral of a vector function. Del operator, gradient, divergence and curl, applications of divergence and curl, Gauss divergence theorem, Stokes curl theorem and Green's theorem and their applications.							

Unit II	Gravitation field and potential Gravitational field and potential, Gravitational potential energy, Gravitational field Intensity and potential due to a ring, a spherical shell, solid sphere and circular disc, inertial and gravitational mass, gravitational self-energy, gravitational self-energy of a uniform solid sphere, Inverse square law of forces, Kepler's laws of planetary motion.	10
Unit III	Rotational and translational motion & Conservation Laws	
	Frames of reference, Concept of inertial and Non-inertial frames of references, Work energy theorem, Conservative and non-Conservative forces, Linear restoring force, Gradient of potential, Conservation of energy for the particle; Energy function, Concept of Centre of mass, translatory and rotatory motion, equation of motion for rotating rigid bodies, Angular momentum and torque, Laws of conservation of total energy, total linear momentum and total angular momentum along with their examples.	10
Unit IV	Dynamics of rigid body and Moment of Inertia and Properties of matter Moment of inertia, Theorem of parallel and perpendicular axes, Moment of inertia of a rod, lamina, ring, disc, spherical shell and solid sphere, kinetic energy of rotation, basic concepts about elasticity, Hook's law, Young's modulus, Bulk modulus, modulus of rigidity, poisson ratio, relation connecting various elastic constants, bending moment, Viscosity, Equation of continuity of flow, Bernoulli's theorem, Posieuille's formula, Stokes's law, Surface tension and its molecular interpretation.	10
Unit V	Theory of Oscillations Simple Harmonic Motion (S.H.M.),differential equation of S.H.M. and its solution ,energy of harmonic oscillator, Lissajous' figures for equal frequencies ratio and 2:1 frequencies ratio, damping forces, damped harmonic oscillator , differential equation of damped harmonic oscillator and its solution, power dissipation in a damped harmonic oscillator, relaxation time, quality factor, simple and compound pendulum, forced or driven harmonic oscillator, its differential equation, amplitude resonance, velocity resonance, sharpness of resonance.	10

- 1. R. Resnick and D. Hilliday : Physics Vol-I 2. Berkeley Physics Course : Mechanics Vol-I
- 2. R.P. Feynman, R.B.Lightan and M.Sand : The Feynman Lectures in Physics
- 3. D.S. Mathur : Mechanics
- 4. Murray Spiegel, Seymour Lipschutz, Dennis Spellman, "Schaum's Outline Series: Vector Analysis", McGraw Hill, 2017.
- 5. J. C. Upadhaya: Mechanics, S. Chand

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- Swayam Prabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

PRACTICAL COMPONENT

- 1. To determine the Moment of Inertia of a Flywheel.
- 2. To determine g and velocity for a freely falling body using DigitalTiming Technique.
- 3. To determine Coefficient of Viscosity of water by Capillary FlowMethod (Poiseuille's method).
- 4. To determine the Young's Modulus of a Wire by Optical LeverMethod.
- 5. To determine the Young's Modulus by bending of beam.
- 6. To determine the Modulus of Rigidity of a Wire by Maxwell'sneedle.
- 7. To determine the elastic Constants of a wire by Searle's method.
- 8. To determine the coefficient of damping, relaxation time, and quality factor of damped simple harmonic motion using simple pendulum
- 9. To determine the value of g using Bar Pendulum.
- 10. To determine the value of g using Kater's Pendulum.
- 11. To determine Surface Tension.

- B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.
- 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.
- 3. Indu Prakash: Practical Physics
- 4. S.L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

- 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74
- 2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists byindividual Universities

GENERAL ELECTIVE (GE P1) -- BASIC PHYSICS-I Programme: General Elective Year: I Semester: I Course Title & Credits **Credit distribution of the course** Eligibility **Pre-requisite of the** Code Criteria course Lecture Tutorial **Practical** GE P1: 4 3 1 0 12th pass 12th pass **Basic Physics I Course Outcomes:** 1. To understand the nature of forces and Newton's laws of motion. 2. To understand the rotational motion and angular variables. 3. To explore the concepts of work and energy. Unit Topic No. of Lectures Unit I Rest and motion, Distance and displacement, Speed, velocity and acceleration, Motion in a straight line, Motion in a plane, Newton's first, 15 second and third law of motion, Pseudo forces, Vector and scalars, Equality of vectors, addition and subtraction of vectors, Resolution of vectors, scalar and vector product of two vectors. Forces: Gravitational, electromagnetic, nuclear and weak forces, scope of Unit II classical physics, Friction as a component of central force, Kinetic and static 15 frictions, Laws of Frictions, Friction at atomic levels. Unit III Circular Motion, angular variables, acceleration in a circular motion, Dynamics of a circular motion, Circular turnings and banking of roads, 15

	Centrifugal and centripetal forces, Effect of Earth's rotation on apparent weight.	
Unit IV	Work and energy: Kinetic and potential energy, Work and work energy theorem, Calculation of work done, work energy theorem for a system of particles, Conservative and non-conservative forces, Gravitational potential energy, Conservation of mechanical energy, mass-energy equivalence.	15

Suggested Reading

1. H. C. Verma: Concepts of Physics

2. Robert Resnick Jearl Walker, David Halliday: Principles Of Physics

3. <u>Halliday</u>, <u>Resnick</u>, <u>Walker</u>: Fundamentals of Physics Extended(Old Edition)

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel,

 $https://\underline{www.swayamprabha.gov.in/index.php/program/current_he/8$

SKILL ENHANCEMENT COURSE (SEC P1) - Basic Instrumentation Skills -I

Programme: Skill Enhancement Course						ar: I	Semester: I	
Course Title &	Credits	Credit distribution of the course			e	Eligibility	Pre-requisite of the	
Code		Lecture/Th eory	Tutorial	hands of trainin		Criteria	course	
SEC P1: Basic Instrumentation Skills -I	2	1	0	2		12 th pass	Physics and Mathematics in 12 th	

Course Outcomes:

- 1. To understand the basic gain of mechanical tools and errors.
- 2. To understand the hand on experience of different mechanical and electrical tools.
- 3. To gain the knowledge of electrical cables, and their specifications.

Unit	Topic (Theory / Experiments/hands on training)	No. of Lectures
Unit I	Errors and Mechanical Tools: Instruments accuracy, precision, sensitivity, resolution, range, least count of different instruments, Errors in measurements, Types of errors. Hand tools and their Uses: Identification, specifications, uses and maintenance of commonly used hand tools: Tweezers Screwdriver (Combination Set), Pliers, Wire Cutters, Wire Strippers, Crimping Tools, Sockets & Hex drivers, Clamps, Rotary Tools: Grinders, Portable Drill Machine, Small Hand Saws.	15
Unit II	Electrical & Electronics Cables and Connector Different type of electrical cables and their Specifications. Types of wires & cables, Standard wire gauge (SWG), Practice on different type of cable joint, Testing phase, neutral and Earth by tester and multi-meter and test lamp.	

Suggested Reading

- 1. B L Theraja : A text book in Electrical Technology
- 2. M G Say: Performance and design of AC machines
- 3. S. Salivahanan & N. S. Kumar : Electronic Devices and Circuits, , 3rd Edn
- 4. Shashi Bhushan Sinha, Handbook of Repair and Maintenance of Domestic Electronics Appliances hand book.
- 5. M. Lotia, Modern Basic Electrical & House Wiring Servicing

SEMESTER-II

UNDERGRADUATE CERTIFICATE COURSE IN PHYSICS

		DISCIPI	LINE SPECI	FIC COURS	E (DSC A	2)		
Programme: U	ndergraduate	Certificate	Course in Phy	vsics	Y	ear: I	Semeste	er: II
Subject: Physi	cs							
Course Title & Code	& Credits		stribution of		Eligibil		-	site of the
Code		Lecture	Tutorial	Practical	Criteri	la	cou	irse
DSC A2: Electricity a Magnetisn					university nance			
Course Outcon	nes:							
types of charge 2. Study of Elect and Electric Dis 3. Study of Stead 4. Understand in 5. Understand th 6. Comprehend t	ric and Magn splacement Ve ly and Varyin g of different ne Magnetosta the different a	ector. ag electric cu aspects of a atics, Lorent	rrents. Iternating curr z Force and E	ents and its ap nergy stored i induction and	oplications n magnetic	Field.		netization
Umt	1	opic						Lecture
C E P d	 Electric field and potential Coulomb law, Gauss' theory, its integral and differential forms, line integral of Electric field, Electric field and potential due to an arbitrary charge distribution. Electrostatic energy, energy stored in an Electric field. Electric field and potential due to long charged wire, Spherical shell, sphere, disc, dipole. 							08
N V S f	1						10	

Unit III	Electric Currents (Steady and Varying)	
	Current density, Equation of Continuity, Ohm's law and electrical	
	conductivity, Lorentz Drude theory, Wiedmann-Frenz law, Kirchhoff's	08
	laws	
	and their applications, Transient current, Growth and decay of D. C. in L - R	
	and L - C circuits, charging and discharging of a capacitor through a resistance.	
Unit IV	Magnetostatics	
	Lorentz force, Bio-Savert's law, Ampere's law, Application of Bio-Savert	09
	law, magnetic field due steady current in a long straight wire, Interaction	
	between two wires, field due a Helmholtz coil, solenoid and current loop,	
	magnetic vector potential, permeability, Energy stored in Magnetic field.	
Unit V	Electromagnetic Induction and Alternating Current	
	Faraday's laws of induction, Lenz's law, Electromotive force, Measurement of	
	magnetic field, Eddy current, Mutual inductance, Self-inductance. Impedance,	10
	admittance and reactance, R-C, R-L and L-C circuits with alternating e.m.f.	
	source, series and parallel L-C-R circuits, resonance and sharpness, Quality	
	factor, Power in A. C. circuits, Choke coil.	

- 1. Edward M. Purcell : Electricity and Magnetism
- 2. J.H. Fewkes&J.Yarwood : Electricity & Magnetism, Vol. I
- 3. D C Tayal : Electricity and Magnetism ", Himalaya Publishing House Pvt. Ltd., 2019.
- 4. D.J.Griffiths : Introduction to Electrodynamics .
- 5. Lal and Ahmed : Electricity and Magnetism
- 6. H. K. Malik and A.K. Singh "Engineering Physics", McGraw Hill Education (India) PrivateLimited, 2018.
- 7. Richard P. Feynman, Robert B. Leighton, Matthew Sands, "The Feynman Lectures on PhysicsVol. 2", Pearson Education Limited, 2012.

Suggested Online Link:

- 2. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 3. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 4. SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Practical Component

- 1. Calibration of Voltmeter by potentiometer.
- 2. Calibration of ammeter by potentiometer.
- 3. Specific resistance determination.
- 4. Conversion of a Galvanometer into a Voltmeter.
- 5. Conversion of a Galvanometer into Ammeter.

- 6. Variation of magnetic field along the axis of a current carrying circular coil.
- 7. Comparison of capacities by Ballistic Galvanometer.
- 8. Determination of Ballistic Constant.
- 9. Electrochemical equivalent.
- 10. De Sauty's bridge- C1/ C2
- 11. R1/R2 by potentiometer.
- 12. Determination of self inductance, mutual inductance.
- 13. Magnetic field determination by search coil and ballistic galvanometer
- 14.

- 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd.,London, 1962.
- 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.
- 3. Indu Prakash: Practical Physics
- 4. S.L. Gupta, V. Kumar, "Practical Physics", PragatiPrakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

- 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74
- 2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

GENERAL ELECTIVE (GE P2) BASIC PHYSICS-II								
Programme: General Elective Year: I Semester: II								
Course Title &	Credits	Credit distribution of the course				Eligibility	Pre-requisite of the	
Code		Lecture	Tutorial	Practic	al	Criteria	course	
GE P2: Basic	4	3	1	0		As per	As per University Ordinance	
Physics II						University Ordinance	Ordinance	

Course Outcomes:

- 1. To understand the linear and angular motion
- 2. To understand the Gravitational field and Simple Harmonic Motion
- 3. To learn about the mechanical properties of matter.

Unit	Topic Center of mass, Motion of the center of mass, Linear momentum and its conservation, Rocket propulsion, Collision, Elastic collision in one dimensions, Impulse and Impulsive forces, Rotation of rigid body about a given fixed line, Rotational dynamics, Torque of force about the axis of rotation. Angular momentum and conservation of angular momentum.					
Unit I						
Unit II	Gravitation: Historical introduction, measurement of gravitational constant 'G', Gravitational potential energy, Gravitational potential, Gravitational field, Relation between gravitational field and potential, Variation in the value of acceleration due to gravity, Planets and satellites, Kepler's law, Weightlessness in a satellite, Escape velocity, Gravitational binding energy, Black holes.	15				
Unit III	Simple Harmonic Motion (SHM): Qualitative nature of SHM, Equation of motion of a SHM, Terms associated with SHM, SHM as a projection of a circular motion, Energy conservation in SHM, Angular SHM.	15				
Unit IV	Mechanical properties of matter: Molecular structure of a material, Elasticity, Stress, Strain, Hooke's law and the modulus of elasticity, Relation between longitudinal stress and strain, Elastic potential energy of a strained body, Surface tension and energy, Viscosity, Poiseuille's equation, Stoke's law.	15				

Suggested Reading

- 1. H. C. Verms: Concepts of Phyiscs
- 2. Robert Resnick Jearl Walker, David Halliday: Principles Of Physics
- 3. <u>Halliday</u>, <u>Resnick</u>, <u>Walker</u>: Fundamentals of Physics Extended(Old Edition)

Programme:	Skill Enhance	ement Cours	se		Year: I	Semester:	11
Course Title	& Credits	Credit distrib	oution of the	course	Eligibility	Pre-requisit	te of the
Code		Lecture/The ory	Tutorial	Hands-on training	Criteria	course	
SEC P2: Bas instrumentati Skills -II			0	2	As per University Ordinance	The studer have done Instrumen I course in	the Basic tation Sk
3. To get Unit	the knowledge		-		s on training)		No. of Lecture
Unit I	Batteries and Maintenance: Types of Batteries, Primary Cell, Secondary Cell, Wet charged, Dry-charged, Low maintenance, Construction of Battery, Case						15
Unit II	Testing of B Testing Fact testing, visua	atteries: ors affecting l inspection,	g charging, Heavy load		attery failure, d onal, Test a batte rging.		

- 1. B L Theraja : A text book in Electrical Technology
- 2. M G Say : Performance and design of AC machines
- 3. S. Salivahanan& N. S.Kumar : Electronic Devices and Circuits, , 3rd Edn
- 4. Shashi Bhushan Sinha, Handbook of Repair and Maintenance of Domestic Electronics Appliances hand book.
- 5. M. Lotia, Modern Basic Electrical & House Wiring Servicing

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

SEMESTER-III DIPLOMA IN APPLIED PHYSICS

DISCIPLINE SPECIFIC COURSE (DSC A3)

Programme: DIPLOMA IN APPLIED PHYSICS

Year: II Semester: III

Subject: Physics

Course Title & Code	Credits	sCredit distribution of the courseLectureTutorialPractical			~~~	Pre-requisite of the course
DSC A3: Thermodynamics and Statistical Physics	4	3	0	1	liniversity	As per the university ordinance

Course Outcomes:

1. Understand First, Second and Third Law of Thermodynamics and concept of Entropy.

2. Understand the physical significance of thermodynamical potentials.

3. Comprehend the kinetic model of gases with respect to various gas laws.

4. Study the implementations and limitations of fundamental radiation laws.

5. Understand basics of statistical Physics and concept of thermodynamic probability

Theory Component

Unit	Торіс	No. Lectu
Unit I	Laws of thermodynamics : Zeroth and first law of thermodynamics, Heat Capacities, Adiabatic Processes, Vander Wall equation, Distinction between Joule, Joule-Thompson and Adiabatic expansion of a gas, Carnot's Engine and Carnot's Cycle, Second law of thermodynamics, Carnot's Theorem, Thermodynamic scale of temperature, Entropy, T-S diagram and its applications, Evaluation of Entropy changes in simple cases, Third law of thermodynamics.	10
Unit II	Thermodynamic Relations: Thermodynamic potentials, Maxwell's equation from thermodynamic potentials, Some useful manipulations with partial derivatives (cooling in adiabatic processes and Adiabatic stretching of a wire), The Clausius–Clapeyron's equations, Triple point, Applications of Maxwell's thermodynamical relations.	10
Unit III	Transport of Heat : Conduction, Convection and Radiation, Fourier's law, One dimensional steady state conduction, Thermal conductivity and its experimental detection, Newton's law of cooling, Black body radiation, Thermodynamics of radiations inside a hollow enclosure, Kirchoff's Laws, Stefan Boltzmann Law, Wien's displacement law, Raleigh Jean's Law, Quantum theory of Radiation, Planck's formula, Wien's law.	10

Unit IV	Basics of Statistical Physics: Basic postulates of Statistical Physics, Macro and Micro States, Phase Space, Condition of equilibrium, Postulate of equal a priori probability, Entropy and Thermodynamic probability, Boltzmann entropy relation, Maxwell-Boltzmann (M-B) statistics and Distribution law.	08
Unit V	Kinetic Theory of Gases: Kinetic theory of gases, Microscopic description of an Ideal gas, Degrees of freedom, Law of Equipartition of Energy, Distribution law of velocities, Most probable speed, Average speed and root mean square velocity of molecules, Pressure exerted by a perfect gas, Kinetic Interpretation of Temperature.	07

- 1. S. Loknathan : Thermodynamics, Heat and Statistical Physics
- 2. Sharma and K.K. Sarkar : Thermodynamics, and Statistical Physics
- 3. Brijlal and Subrahmanyam : Heat and Thermodynamics
- 4. Garg, Bansal and Ghose : Thermal Physics, McGraw Hill, 2012.
- 5. M.W. Zemansky, R. Dittman, "Heat and Thermodynamics", McGraw Hill, 1997.
- 6. Enrico Fermi, "Thermodynamics", Dover Publications, 1956.
- 7. MeghnadSaha, B.N. Srivastava, "A Treatise on Heat", Indian Press, 1973
- 8. F.W. Sears, G.L. Salinger, "Thermodynamics, Kinetic theory & Statistical thermodynamics", Narosa Publishing House, 1998.
- 9. Singhal and Prakash: Heat and Thermodynamics, Pragati Prakashan

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Practical Component

- 1. Thermal conductivity of a bad conductor by Lee's method.
- 2. Mechanical equivalent of heat by Searle's method.
- 3. Stefan's law
- 4. Platinum resistance thermometer.
- 5. J by Callendar and Barnes method.
- 6. Random throw- statistical method.
- 7. Newton's law of cooling, sp. heat of Kerosene oil.
- 8. Constant volume thermometer.
- 9. Variation of thermo-emf across two junctions of a thermocouple with temperature.

Suggested Readings:

- 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.
- 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.

- 3. Indu Prakash: Practical Physics
- 4. S.L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014

Suggestive Digital Platforms / Web Links:

- 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74
- 2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

DISCIPLINE SPECIFIC ELECTIVE (DSE A1)

Programme: DISC	CIPLINE	Year: II	Semester: III			
	Credits	Credit d	listribution of t			Pre-requisite of the
Code		Lecture	Tutorial	Practical	Criteria	course
DSE A1: Waves and Acoustics	4	3	0	1	As per the university ordinance	As per the university ordinance

Course Outcomes:

- 1. To understand the wave motion
- 2. To understand the Ultrasonic waves and its application
- 3. Measurement of acoustic intensity and energy density
- 4. To understand the application of wave propagation in various physical cases.

Theory Component

Unit	Торіс							
Unit I	Analysis of wave motion: Characteristics, Differential equation of a wave motion, principle of superposition, Interference, Beats, stationary waves, Energy of stationary waves, Wave velocity and group velocity, Fourier theorem, Fourier analysis of square, triangular and saw-tooth waves.							
Unit II	Unit II Ultrasonics: Classification of Sound waves, Ultrasonics, Quartz crystal and Piezo electric effect, Magnetostriction effect, Properties of Ultrasonic, Detection of ultrasonic waves, Determination of velocity of ultrasonic waves in liquid (Acoustic grating method). Application of Ultrasonics.							
Unit III	Acoustics : Energy density of plane acoustic waves, Acoustic intensity, Measurement of acoustic intensity – the dB scale, Characteristics and loudness of Musical sound, Acoustic impedance, Reflection and transmission of acoustic waves.	10						
Unit IV	Applications : Application of wave propagation in various physical cases, Applications of Ultrasonics, Acoustics of buildings, reverberation time, Sabine's formula, Principle of sonar system.	10						

Suggested Reading

1. R. Resnick and D. Hilliday : Physics Vol-I

- 2. D.S. Mathur : Mechanics
- 3. Brijlal and Subrahmanyam : Waves and Oscillations
- 4. B.S.Semwal and M.S.Panwar : Wave Phenomena and MaterialScience
- 5. Berkeley Physics Course : Mechanics Vol-I
- 6. R.K.Ghose : The mathematics of waves an Vibrations
- 7. D.P.Khandelwal : Oscillations and Waves
- 8. I.I.Pain : Physics of Vibration
- 9. A. P. French : Vibrations and Waves

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

PRACTICAL COMPONENT

- 1. To study the Motion of Spring and calculate (a) Spring constant, (b) g and (c) Modulus of rigidity.
- 2. To determine the frequency of tuning fork with the help of sonometer.
- 3. To determine the frequency of AC mains with a Sonometer using magnetic wire.
- 4. To determine the frequency of AC mains with a Sonometer using non- magnetic wire.
- 5. To determine the frequency of AC mains by Melde's experiment.
- 6. To determine the velocity of sound in air at room temperature with Kundt's tube.
- 7. To determine the velocity of Ultrasonic wave in a given liquid.
- 8. To compare the velocities of sound in two gasses at room temperature.

Suggested Readings:

- 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.
- 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.
- 3. Indu Prakash: Practical Physics
- 4. S.L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

- 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74
- 2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists byindividual Universities

GENERAL ELECTIVE (GE P3)								
Programme:	General Ele	ctive			Year: II	Semester	: III	
Course Title	& Credits	Credit dist	ribution of the	e course	Eligibility	Pre-requis	site of the	
Code		Lecture	Tutorial	Practical	Criteria	course		
GE P3: Fundamental Mechanics	4	3	1	0	As per University Ordinance	As per U Ordinanc	niversity ce	
ourse Outco 1. To ga	omes:	ge of vector	r algebra.					
2. To un	derstand the fra	ames of refe	erences and N	lewton's law of	f motion.			
	of the Keplelr's			nt laws.				
Unit	Торіс						No. of Lectures	
Unit I	_	ra. Scalar rameter. 1s	and vector p t order homo	products. Deri geneous differ	vatives of a ver rential equations.		15	
Unit II Translatory and Rotatory Motion and Conservation Laws Frames of reference. Newton's Laws of motion. Dynamics of a system of particles. Centre of Mass, Conservation of momentum. Work and energy. Conservation of energy. Motion of rockets, Angular velocity and angular momentum. Torque. Conservation of angular momentum.						nd energy	15	
Unit III Gravitation Newton's Law of Gravitation. Motion of a particle in a central force field (motion in a plane, angular momentum conservation). Kepler's Laws (statement only). Satellite in circular orbit and applications. Geosynchronous orbits. Basic idea of global positioning system (GPS). Weightlessness.					r's Laws nchronous	15		
Unit IV	Physiological Elasticity			8 - <i>j storm</i> (1				
Hooke's law - Stress-strain diagram - Elastic moduli-Relation between elastic constants - Poisson's Ratio-Expression for Poisson's ratio in terms of elastic constants - Work done in stretching and work done in twisting a wire.							15	

1. Sears, Zemansky and Young : University Physics

2. Berkeley Physics Course : Volume-1 Mechanics

3. Resnick, Halliday & Walker Fundamentals of Physics

- 4. Basudeb Bhattacharya : Engineering Mechanics 2nd Edn
- 5. Ronald Lane Reese : University Physics
- 6. B.L. Flint and H.T. Worsnop : Advanced Practical Physics forStudents

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. Swayam Prabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

SKILL ENHANCEMENT COURSE (SEC P3)									
Programme: Skill Enhancement Course						ar: II	Semester: III		
	Credits	Credit distribution of the course				Eligibility	Pre-requisite of the		
Code		Lecture/The ory		Hands-on training	C	Criteria	course		
SEC P3 : Basic Instrumentation Skills -III	2	1	0	2	U	As per Jniversity Drdinance	As per University Ordinance		

Course Outcomes:

- 1. Hands on practice of domestic wiring and electrical systems.
- 2. To understand the soldering and practice it's on different electronic components.

Unit	Topic (Theory and hands on practice)	No. of Lectures
Unit I	Domestic Wiring	
	Introduction and explanation of electrical wiring systems, cleat wiring, casing & Capping, house wiring, specification and types, rating & material. Demonstration & Practice on connecting common electrical accessories in circuits and testing them in series board., Testing & replacement of different types of fuses, switches, plug, sockets. Identification of different wiring materials and their specification, Removal of insulation from assorted wires and cable, Making a switchboard with electrical accessories, Making an Extension	
	board.	
Unit II	Soldering : Solders, flux and soldering technique. Different types of soldering guns related to Temperature and wattages, types of tips, Solder materials and their grading. Use of flux and other materials, Selection of soldering gun for specific requirement, Soldering and De-soldering stations and their specifications. Soldering/ De-soldering and Various Switches, Practice soldering on different electronic components, small transformer, Practice de-soldering	

- 1. B L Theraja : A text book in Electrical Technology
- 2. M G Say : Performance and design of AC machines
- 3. S. Salivahanan& N. S. Kumar : Electronic Devices and Circuits, , 3rd Edn
- 4. Shashi Bhushan Sinha, Handbook of Repair and Maintenance of Domestic Electronics Appliances hand book.
- 5. M. Lotia, Modern Basic Electrical & House Wiring Servicing

SEMESTER IV

DIPLOMA IN APPLIED PHYSICS

		DISCIPLINE	SPECIFIC (COURSE-DSC	A4	
Programme:	DIPLOMA I	IN APPLIED P	HYSICS	Year: II	Seme	ester: IV
Subject: Phy	sics			I		
Course Title &	Credits	Credit distrib	Credit distribution of the course			Pre-requisite of the course
Code		Lecture	Tutorial	Practical	Criteria	of the course
DSC A4: Optics	4	3	0	1	As per the university ordinance	As per the university ordinance
behind 2. Under 3. Study 4. Study 5. Study amplit 6. Under 7. Under 8. Study	of Fermat's F lreflection an stand the theo of different ty of different ty of Interferent ude. standing Diff stand the pola of different ty	d refraction of 1 ory of image for ypes of optical A ypes of optical i ce of light. Inter fraction of Light arization of light ypes of associate which are widely	ight. mation by an Aberrations a nstruments u ference by di and concept t. ed optical ins	optical system. nd techniques for sed in industry vision of wavef of Zone Plate. struments based astry and resear	or their reduction and research front and division on interference	n. n of
Unit	1	Topic				No. of
		Topic				Lecture
Unit I	of extremun refraction, H longitudinal general theo: points of ar Coaxial lens through a th Gaussian ey	n path and its a Refraction at comagnifications, ry of image form optical system system, Lagra ick lens; Noda	application t oncave surfa Aplanatic po nation, Coax n, Thick and unge's equational l Slide, Eyep	o deduce laws ace, Principal a bints of spherica ial symmetrical d Thin lens, N on of magnific biece, Ramsden	Fermat's principl of reflection an foci, Lateral an l surface; Gauss system, Cardina ewton's formula cation, Refractio 's, Huygen's an pe, Microscope	le d 10 2's al a, n d

Unit II	Optical Aberrations and Dispersion: Aberrations in images, Spherical aberration, Monochromatic and Chromatic aberration, Condition of achromatism, Achromatic combination of lenses in contact and separated lenses, Spherical mirrors and Schmidt corrector plates, Theory of dispersion.	07
Unit III	Interference: The principle of superposition, Two slit interference, coherence, Optical path retardations, lateral shift of fringes, Fresnel biprism, Interference with multiple reflection, Thin films, Application for precision measurements, Haidinger fringes, Fringes of equal thickness and equal inclination; Michelson intereferometer and its application for precise measurement of wavelength, Wavelength difference and width of spectral lines, Fabry-Perot interferometer and Etalon	10
Unit IV	Diffraction: Fresnel's and Fraunhofer diffraction: Diffraction of single slit, Zone plates, intensity distribution, Resolution of image, Rayleigh criterion, Resolving power of telescopes and microscopes, Diffraction due to 2-slits and N-slits, Diffraction grating, Resolving power of grating and comparison with resolving powers of prisms.	08
Unit V	Polarization: Plane polarized, Circular polarized and elliptically polarized light, Malus law, Brewster's law, Double reflection and uniaxial crystals, Application of bi-refringence, Dichroism, Optical rotation, Rotation of plane of polarization, Optical rotation in liquids and crystals, Polarimeter.	10

- 1. D.P. Khandelwaland : Optics and Atomic Physics
- 2. Jenkins and White : Fundamentals of Optics
- 3. A.K. Ghatak : Physical Optics
- 4. Brijlal and Subrahmanyam : Optics
- 5. K.D. Moltev : Optics
- 6. B. K. Mathur : Optics
- 7. B. D. Guenther : Modern Optics, Oxford Press
- 8. E. Hecht: Optics, Pearson.

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd SwayamPrabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Practical Component

- 1. Nodal slide assembly, Location of cardinal points of lens system.
- 2. Newton's formula.
- 3. Dispersive power of prism.
- 4. Resolving power of a telescope.

- 5. To determine the Resolving Power of a Prism.
- 6. To find the thickness of the wire using optical bench.
- 7. To determine the thickness of mica-sheet by using Biprism
- 8. Biprism- determination of λ .
- 9. Newton's ring experiment- Determination of λ .
- 10. Zone-plate experiment study of different orders.
- 11. Malus Law
- 12. Polarimeter: Specific rotation of sugar solution.

- 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.
- 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.
- 3. Indu Prakash, Practical Physics
- 4. S.L. Gupta, V. Kumar, "Practical Physics", PragatiPrakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

- 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74
- 2. Digital Platforms /Web Links of other virtual labs may be suggested / added to thi lists by individual Universities

DISCIPLINE SPECIFIC ELECTIVE (DSE A2)

Programme: DISCIPLINE SPECIFIC ELECTIVE

Year: II Semester: IV

Subject: Physics

Course Title	e &	Credits	Credit dist	ribution of the	course	Eligibility	Pre-requisi	te of the
Code			Lecture	Tutorial	Practical	Criteria	course	
DSE A2 Elementary Solid- State Physics 4		4	3	0	1	As per the university ordinance	As per the universi ordinance	
		1		Theory (Component	I	1	
Unit		,	Торіс					No. of Lecture
Unit I	of m num Type Strue	Crystalline and non - crystalline sate of solids. Single and polycrystalline forms of matters, Lattice, Basis, primitive and non-primitive unit cells, coordination number. Translational vectors, symmetry operations, point and space groups. Types of lattices and seven crystal system. Lattice planes and Miller indices. Structure of SC, BCC, FCC (with examples) and closed packed structures. Structure of diamond.						
Unit II	Lattice constant, Inter-planar spacing, density of lattice points, atomic packing fractions. Reciprocal lattices and their properties, X-rays diffraction by matter, Bragg's law, Laue methods of X-rays diffraction. Brillouin zones and their applications.							10
Unit III	Free electron theory of metals, Lorentz Drude theory and its limitations, Somerfield theory of free electrons. Specific heat, Dulong and Petit's law, departure of the law at low temperatures. Einstein's theory of specific heat and its limitations, Debye's theory of specific heat of solids,						15	
Unit IV	in s	olids, di	stinction b	between cond	ductors, semi	Penny model. En conductors and and Fermi energy	insulators,	10

Suggested Reading

1. Agarwal and Agarwal "Fundamentals of Modern Physics" (Pragati Prakashan- Meerut)

2. Dekker "Solid State Physics" (Laxmi Publications)

3. C.Kittel "Introduction to Solid State Physics" (Wiley)

4. S.O.Pillai "Solid State Physics" (New Age International)

5. Saxena, Gupta and Saxena, "Fundamental of Solid-State Physics" (PragatiPrakashan-Meerut)

Practical Component

- 1. Thermal conductivity of a good conductor by Searle's method.
- 2. To determine Hall voltage and Hall coefficient in n-type semiconductor.
- 3. To determine the number of charge carriers per unit volume in n-type semiconductor.
- 4. To determine Hall angle and mobility in n-type semiconductor.
- 5. To determine the band gap in a semiconductor using a p-n junction diode.
- 6. To determine the ionization potential of gas filled Thyratorn.
- 7. To plot the characteristics of thermistor and hence find the temperature coefficient of resistance.

Suggested Readings:

- 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.
- 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.
- 3. Indu Prakash, Practical Physics
- 4. S.L. Gupta, V. Kumar, "Practical Physics", PragatiPrakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

- 1. Virtual Labs at Amrita Vishwa Vidyapeetham, <u>https://vlab.amrita.edu/?sub=1&brch=74</u>
- 2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists Universities.

	C				CTIVE (C	Year: II		Semester: Г							
Programn	ne: Gene	eral Ele	ective			rear: II	2	bemester: 1							
Course Ti	tle &	Credits	Credit distri	bution of the	course		Pre-req	uisite of the							
Code			Lecture	Tutorial	Practical	Criteria	course								
GE P4: Basic Electricity and Magnetism		4	3	1	0	As per University Ordinance	As per University Ordinance								
	nding of I			otential. Eval	luation of Ele	ectric Field and	l Poten	tial for							
lifferentty	L	0													
•	•	•	ig electric c												
	-		-	-		ts applications.									
4. Understa U nit	and the M Topic		atics, Loren	tz Force and	1 Energy stor	red in magnetic		No. of							
	- opic							Lectures							
Unit I	Electr	Electrostatics:													
	Electro	statics.	10												
	Applic	charge,													
	infinite line of charge, uniformly charged spherical shell and solid sphere.														
	plane o	ntegral													
	of elec	tricfield,	potential d	ue to a poin	t charge, elec	ctric dipole, uni	formly								
	charge	ed													
			and solid sp	ohere.											
Unit II	Magnetism Magnetostatics: Biot-Savart's law and its applications- straight														
	_	-													
	conductor, circular coil, solenoid carrying current. Divergence and curl														
						,	of magnetic field. Magnetic vector potential. Ampere's circuital law Magnetic properties of materials: Magnetic intensity, magnetic								
	of m	agnetic f	ield. Magn	etic vector	potential. A	-									
	of ma Magne	agnetic f etic pro	ield. Magn perties of	etic vector materials:	potential. A	-									
	of ma Magne induct	agnetic f etic pro- ion, pern	ïeld. Magn perties of neability, m	etic vector materials: nagnetic	potential. Ai Magnetic	intensity, ma	agnetic								
	of ma Magne induct suscep	agnetic f etic pro- ion, perm tibility.	ïeld. Magn perties of neability, m	etic vector materials: nagnetic	potential. Ai Magnetic	-	agnetic								
Unit III	of ma Magne induct suscep materi	agnetic f etic pro- ion, perm tibility. als.	ield. Magn perties of neability, n Brief intr	etic vector materials: nagnetic oduction o	potential. An Magnetic f dia-, par	intensity, ma a-and ferroma	agnetic								
Unit III	of ma Magne induct suscep materi Electr	agnetic f etic pro- ion, pern- tibility. als. romagne	ield. Magn perties of neability, m Brief intr tic Induction	etic vector materials: nagnetic roduction o on and Alte	potential. An Magnetic f dia-, par rnating Cur	intensity, ma a-and ferroma rent	agnetic								
Unit III	of ma Magne induct suscep <u>materi</u> Electr Farada	agnetic f etic pro- ion, perm tibility. als. romagne ny's laws	ield. Magn perties of neability, m Brief intr tic Inductions of electro	etic vector materials: nagnetic oduction o on and Alte magnetic ir	potential. An Magnetic f dia-, par rnating Cur nduction, Le	intensity, ma a-and ferroma rrent nz's law, self	agnetic agnetic and								
Unit III	of ma Magne induct suscep materi Electr Farada mutua	agnetic f etic pro- ion, perm tibility. als. romagne ny's laws linductar	ield. Magn perties of neability, m Brief intr tic Inductions of electron nce, L of sir	etic vector materials: hagnetic roduction o on and Alte magnetic in hgle coil, M	potential. An Magnetic f dia-, par rnating Cur nduction, Le	intensity, ma a-and ferroma rent nz's law, self Energy stored	agnetic agnetic and								
	of ma Magne induct suscep <u>materi</u> Electr Farada mutua magne	agnetic f etic pro- ion, perm tibility. als. comagne ny's laws linductar etic field.	ield. Magn perties of neability, m Brief intr tic Inductions of electron nce, L of sir Basic conc	etic vector materials: nagnetic oduction o on and Alte omagnetic in ngle coil, M cepts of alter	potential. An Magnetic f dia-, par rnating Cur iduction, Le of two coils. nating curren	intensity, ma a-and ferroma rent nz's law, self Energy stored	agnetic agnetic and								
	of ma Magne induct suscep materi Electr Farada mutua magne Maxw	agnetic f etic pro- ion, perm tibility. als. omagne ny's laws linductar etic field. rell`s equ	ield. Magn perties of neability, m Brief intr tic Induction of electron nce, L of sin Basic concu ations and	etic vector materials: agnetic roduction o on and Alte omagnetic in agle coil, M cepts of alter Electroma	potential. An Magnetic f dia-, par rnating Cur aduction, Le of two coils. nating curren gnetic wave	intensity, ma a-and ferroma rrent nz's law, self Energy stored nts.	agnetic agnetic and in	10							
Unit III Unit IV	of ma Magne induct suscep <u>materi</u> Electr Farada mutua <u>magne</u> Maxw	agnetic f etic pro- ion, perm tibility. als. comagne ny's laws linductar <u>etic field.</u> rell`s equ on of c	rield. Magn perties of neability, m Brief intr tic Induction of electron ce, L of sin <u>Basic conc</u> nations and ontinuity,	etic vector materials: nagnetic oduction o on and Alte omagnetic ir ngle coil, M cepts of alter Electroma Displacement	potential. An Magnetic f dia-, par rnating Cur nduction, Le of two coils. <u>nating curren</u> gnetic wave nt current,	intensity, ma a-and ferroma rent nz's law, self Energy stored nts. propagation	agnetic agnetic and in ations,	10							

1. Edward M. Purcell : Electricity and Magnetism

2. J.H. Fewkes & J.Yarwood : Electricity & Magnetism, Vol. I

3. D C Tayal : Electricity and Magnetism

4. Ronald Lane Reese : University Physics

5. D.J.Griffiths : Introduction to Electrodynamics, 3rd Edn.

6. B.L.Flint & H.T.Worsnop : Advanced Practical Physics for Students

7. M. Nelson and J. M. Ogborn : Advanced level Physics Practicals, 4th Ed

8. I.Prakash & Ramakrishna : A Text Book of Practical Physics, 11th Ed

9. S.Panigrahi & B.Mallick : Engineering Practical Physics

Suggested Online Link:

1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology

Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/ind

ex.php/program/current_he/8

Programme: Skill Enhancement Course					Year: II	Semester: IV
Course Title & Code	Credits	Credit distrib Lecture/The ory	ution of the co Tutorial	urse Hands-on training	Eligibility Criteria	Pre-requisite of the course
SEC P4: Basic Instrumentation Skills -IV	2	1	0	2	As per University Ordinance	As per University Ordinance

Course Outcomes:

- 1. To understand the theory and use of CRO
- 2. To understand the Signal and pulse Generators

Unit	Topic (Theory and hands on practice)	No. of Lectures
Unit I	Impedance Bridges: Block diagram of bridge. Working principles of basic (balancing) RLC bridge, Specifications of RLC bridge, Block diagram and	
	working principle as of a Q-meter, Digital LCR bridges.	15
Unit II	Electronic Voltmeter: Principles of voltage, measurement (block diagram only). Specifications of an electronic Voltmeter, AC millivoltmeter: Type of AC millivoltmeters, Block diagram ac milli -voltmeter, specifications and their significance.	15

Suggested Reading

- 1. B L Theraja: A text book in Electrical Technology
- 2. M G Say: Performance and design of AC machines
- 3. S. Salivahanan& N. S. Kumar: Electronic Devices and Circuits, , 3rd Edn
- 4. Shashi Bhushan Sinha, Handbook of Repair and Maintenance of Domestic Electronics Appliances hand book.
- 5. M. Lotia, Modern Basic Electrical & House Wiring Servicing

SEMESTER V BACHELOR IN SCIENCE

Programme: DIS	CIPLINE	Year:	III Semester: V			
Subject: Physics					I	
Course Title &	Credits	Credit dis	stribution of	the course	Eligibility	Pre-requisite of the
Code		Lecture	Tutorial	Practical	Criteria	course
DSC A5: Modern Physics	1 4	3	0	1	As per the university ordinance	As per the university ordinance
 Study of st X-rays: th Lasers and 	ifferent at ptical spec cructure o eir produ l their wo A and B o	ctra, X- ra f atomic n ction and s rking prin coefficients	ys and LASH ucleus spectra: cont ciple, sponta s, Metastable	inuous and cl neous and sti	mulated emiss	-rays, Moseley Law. ions and absorption. er and lasing action ir

Theory Component

Unit	I	No. of Lectures				
Unit I	Atomic Models : Thomson model, Rutherford model, Bohr model and spectra of hydrogen atom, Fine structure, Bohr Magnetron, Larmor ^{**} s precession, Somerfield model, Stern-Gerlach experiment, Vector atomic model, Space Quantization and Spinning of an electron.					
Unit II	Optical Spectra and X-rays : Optical spectra, Spectral notations, L-S, J-J coupling, Selection rules and intensity rules, Explanation of fine structure of Sodium D line, Zeeman effect, X-ray spectra(characteristics and continuous), Moseley''s law.					
Unit III	Theory of Lasers : Einstein A and B coefficients, Spatial and Temporal coherence, Optical pumping, Population inversion, Laser action, Basic idea of LASER and MASER, Ruby Laser and He-Ne laser, Some applications.	10				
Unit IV	Molecular Spectroscopy : Franck-Condon Principle, Molecular spectra, Rotational, Vibration and Electronic spectra of diatomic molecules, General features of electronic spectra, Luminescence, Basics of Raman effect.	10				

Unit V	Subatomic Physics	
	Structure of atomic nucleus, nuclear properties (charge, mass, spin, shape), nuclear binding energy, liquid drop model and semi-empirical	
	mass formula	10

- 1. H.S. Mani and Mehta : Introduction to Modern Physics
- 2. A. Beiser : Perspective of Modern Physics
- 3. Ahmad and Lal, : Modern Physics
- 4. B.V.N. Rao : Modern Physics
- 5. R. Murugeshan : Modern Physics
- 6. S.N. Ghosal : Nuclear Physics
- 7. C. B. Banwell : Fundamentals of Molecular Spectroscopy

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Practical Component

- 1. Absorption coefficient of a liquid with the help of voltaic cell.
- 2. Frank-Hertz Experiment.
- 3. To verify Malus law using MASER and LASER.
- 4. Stern-Gerlach experiment.
- 5. To determine the wavelength and angular spread of He-Ne laser
- 6. Determination of Ionization Potential using thyratron valve.
- 7. To determine the value of electronic change by Millikan's method.

Suggested Readings:

- 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd.,London, 1962.
- 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.
- 3. Indu Prakash: Practical Physics
- 4. S.L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014. Suggestive Digital Platforms / Web Links:
 - 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74
 - 2. Digital Platforms /Web Links of other virtual labs may be suggested/ added to this lists byindividual Universities

DISCIPLINE SPECIFIC ELECTIVE (DSE A3)

Programme: DISC	CIPLINE	SPECIFIC	ELECTIVE			Year: II	I Semester: V
Course Title & Code	Credits	Credit distribution of the course			Eligibility		Pre-requisite of the
		Lecture	Tutorial	Practical	Criteria		ourse

DSE A3 : Basic Quantum Mechanics	4	3	0	1	universuv	As per the university ordinance
---	---	---	---	---	-----------	---------------------------------

Course Outcomes:

- 1. Main aspects of the inadequacies of classical mechanics as well as understanding of the historical development of quantum mechanics.
- 2. Heisenberg's Uncertainty principle and its applications, photoelectric effect and Compton scattering.
- 3. The Schrodinger equation in 1-dimension, wave function, probability and probability, current densities, normalization
- 4. Particle in a box problem, energy levels.

Theory Component

Unit	Торіс	No. o Lectur				
Unit I	Origin of Quantum theory: Origin of quantum theory, limitation of Classical Physics, Black body Radiation, Planck's radiation law and Einstein's explanation, The photo electric effect and Einstein correction, Compton effect.					
Unit II	Wave-Particle Duality: De Broglie's Hypothesis, Wave-Particle Duality, Davisson- Germer Experiment, G.P Thomson experiment, Taylor's experiment, Wave description of Particles by Wave Packets, Group and Phase Velocities, Principle of Complimentarity, Heisenberg Uncertainty principle, Gamma ray microscope, Single slit experiment.	10				
Unit II	Formalism of Quantum mechanics: Linear vector space, Linear Operator, Definition of position, momentum, Energy and Angular momentum operator, Eigen value and Eigen functions, Hermitian operators, Postulates and basic theorems of Quantum mechanics, Operator method for solving Eigen values problem, Energy of Harmonic oscillator.	10				
Unit IV	⁷ Schrödinger equation – The first law of Quantum Mechanics : Origin of non relativistic Quantum Mechanics, Overview of wave mechanics, Simple one dimensional quantum system Oscillator, Time independent and time dependent one dimensional Schrödinger equation, Steady state solutions, Physical interpretation of wave functions, probability current density, Ehrenfest's theorem, Particle in a box, Idea of Tunneling	15				

Suggested Reading

- 1. L.I. Schiff, "Quantum Mechanics" (McGraw Hill Book Co.)
- 2. Chris J. Isham, "Lectures on Quantum Theory" (Allied Publisher)
- 3. B.S. Rajput, "Advanced Quantum Mechanics" (Pragati Prakashan)
- 4. Ghatak and Lokanathan, "Quantum Mechanics" (Macmillan Pub.)
- 5. Mathew and Venkatesan , "Quantum Mechanics"(Tata McGraw-Hill)

Practical Component

- 1. Determination of Rydberg's constant.
- 2. Determination of 'h' Planck's constant by Photoelectric effect.
- 3. 'e/m' by Thomson method.
- 4. 'e/m' Magnetron method.
- 5. 'e/m' Helical method
- 6. To determine the Planck's constant using LEDs of at least 4 different colours.

- 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.
- 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.
- 3. Indu Prakash: Practical Physics
- 4. S.L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

- 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74
- 2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

GENERAL ELECTIVE (GE P5)									
Programme: General Elective				Year: III	Semester: V				
Course Title & Code	Credits		ution of the con Tutorial	urse Practical	Eligibility Criteria	Pre-requisite of the course			
GE P5: Basics of Heat Transfer	4	3	1	0	As per University Ordinance	As per University Ordinance			

Course Outcome:

- 1. To understand the of Heat Transfer processes.
- 2. Thermal radiation, Kirchoff's Laws, Derivation of Stefan Boltzmann law, and Wein's displacement law.
- 3. To understand the black body radiation and related laws.

Unit	Торіс				
Unit I	Conduction : Modes of heat transfer via Conduction: Fourier's law, One dimensional steady state conduction, Heat conduction through plane and composite walls, Cylinders and spheres, Electrical analogy, Thermal conductivity and its experimental detection.				
Unit II	Convection : Modes of heat transfer via Convection : Newton's law of cooling, Dimensional analysis applied to forced and free convection, Dimensionless numbers and their physical significance.				
Unit III	Thermal Radiation : Physical quantities associated with Radiation, Black body, Radiation from non-black-bodies, Thermodynamics of radiations inside a hollow enclosure, Kirchoff's Laws, Derivation of Stefan Boltzmann Law, Wein's displacement law.	15			
Unit IV	Black Body Radiation: Black body spectrum formula- early attempts, Raleigh Jean's Law, Quantum theory of Radiation, Planck's formula for black body spectrum, Wien's law, Radiation as a photon gas.	10			

- 1. S. Loknathan, "Thermodynamics, Heat and Statistical Physics" (Prentice Hall India)
- 2. Sharma and K.K. Sarkar "Thermodynamics, and Statistical Physics" (Himalaya Pub.)
- 3. Brijlal and Subrahmanyam, "Heat and Thermodynamics" (S Chand)
- 4. Saha and Srivastav "Treatise on heats", (The Indian Press Publications)

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- Swayam Prabha DTH Channel, https://www.swayamprabha.gov.in/index.php/ program/current_he/8
| Programme: | Skill Enhanc | ement Cour | se | | Year: III | Semester: | V | |
|---|----------------------------------|---------------------------|---------------------------|--------------------------------|--|------------------------|-----------------------------|--|
| Course Title | & Credits | Credit dist | ribution of t | he course | Eligibility | | Pre-requisite of the course | |
| Code | | Lecture/Th
ory | eTutorial | Hands-on
Training | Criteria | course | | |
| SEC P5: Adva
nstrumentation
Measureme
Techniques | n and
nt | 1 | 0 | 2 | As per
University
Ordinance | As per Ur
Ordinance | | |
| | erstand the Im
erstand the Pr | inciple and u | uses of elect | ronic voltmet
nds on practi | | | No. of
Lecture | |
| Unit I | voltage, ac c
significance. | urrent and 1
Advantage | resistance. S
e over c | Specifications | voltage and dc of
of a multimeter
multimeter for
sensitivity. | r and their | 15 | |
| Unit II | Working prin | nciple of tim | e interval, f | requency and | of a digital multi
period measurer
bility, accuracy | nent using | 15 | |

Suggested Reading

- 1. B L Theraja : A text book in Electrical Technology
- 2. M G Say : Performance and design of AC machines
- 3. S. Salivahanan& N. S.Kumar : Electronic Devices and Circuits, , 3rd Edn
- 4. Shashi Bhushan Sinha, Handbook of Repair and Maintenance of Domestic Electronics Appliances hand book.
- 5. M. Lotia, Modern Basic Electrical & House Wiring Servicing

<u>OR</u>

Programme: Sk	till Enhance	ement Cours	se		Year: III	Semester:	V
Course Title &	Credits	Credit distr	ibution of the	course	Eligibility	Pre-requis	ite of the
Code		Lecture/The ory	Tutorial	Hands-on Training	Criteria	course	
SEC P5_Electric circuit network Skills - I		1	0	2	As per University Ordinance	As per Un Ordinance	iversity
	tand the Im tand the Pri		dges. ses of electro ory and hand				No. of Lecture
Ze La se: Se	ro Reference w, Linear ar ries circuit, C ries Aiding	e level, Chass ad Non-linear Characteristic and series o	resistor, Cells s, Case of zero	n's Law, Gra in series in e IR drop, Pol ges, Proportio	aphical representa lectrical circuits, larity of IR drops onal voltage forr	Resistances in , Total Power,	15
Ce Sp	ells in paralle becial case o	f equal resist	circuits, Paralla	anches and c	rcuits, Laws of pa only two branches rts in a parallel ci	s, Any branch	15

Suggested Reading

- 1. B L Theraja : A text book in Electrical Technology
- 2. B L Theraja : A text book in Basic Electronics
- 3. M G Say : Performance and design of AC machines
- 4. S. Salivahanan& N. S.Kumar : Electronic Devices and Circuits, , 3rd Edn
- 5. Shashi Bhushan Sinha, Handbook of Repair and Maintenance of Domestic Electronics Appliances hand book.
- 6. M. Lotia, Modern Basic Electrical & House Wiring Servicing

SEMESTER VI

BACHELOR IN SCIENCE

DISCIPLINE SPECIFIC COURSE (DSC A6)

Programme: I	DISCIPLINE	SPECIFIC	COURSE		Year: III	Semester	: VI	
Subject: Phys	ics							
Course Title Code	& Credits	Credit dist <mark>Lecture</mark>	ribution of th Tutorial	e course Practical	Eligibility Criteria	Pre-requi course	site of the	
DSC A6: Electronics	4	3	0	1	As per the university ordinance	As per the ordinance	university	
 Study of 2. Study of Regulat Study of 4. Study of 	 Regulator. 3. Study of different types of special diodes and their applications 4. Study of Bipolar Junction Transistors. 							
Unit	r.	Горіс					No. of Lectures	
	Theorem, N Semiconducto rectifiers, Brio	Vorton"s T or diode: P-J lge rectifiers and pass and	heorem, Ma N Junction di , Efficiency, F d Band stop fi	aximum po iode, Diode a Ripple factor, I	ition Theorem, 7 wer transfer as a: Half and Filters: Low pase t – filters, Zener	theorem, Full wave s and High	10	
	Optoelectronic Transistor ope configuration (devices: Ligl ration and i CB, CE, and cut-off and sa	nt emitting dioo ts Biasing rul CC configurat turation points,	de, Photodiode e, Transistor ion), Transisto Active region	haracteristic of th , Bipolar junctior currents, Transis or characteristics , Relation betwee	n transistor, stor circuit in different	10	
	Amplifiers : Single-stage transistor amplifiers, Common base (CB) amplifier, Common emitter (CE) amplifier, Common collector (CC) amplifier, Amplifier based on biasing condition, Power amplifiers, Noise and Distortion in amplifiers, RC- coupled two stage amplifier and its frequency response, Feedback amplifiers, positive and negative feedback, Advantage of negative feedback.							
Unit IV	Oscillators : (stability of an Tuned collector	Classification oscillator, Ess r oscillator, H or, Crystal os	of oscillators, I sential of a feed artley oscillator scillator, Phase	Frequency of or dback LC oscil r, Colpitt oscilla e shift oscillate	scillating current, llator, Tuned base ator, Clapp oscilla or, Wien Bridge and bistable).	e oscillator, ttor, Tunnel	08	

Unit VDigital Electronics: Number systems, Decimal, Binary, Octal and Hexadecimal
number systems, Binary to decimal conversion, Boolean algebra, Laws of Boolean
algebra, De Morgan's theorems, Logic gates, OR gate, Exclusive OR gates, AND gate,
NOT gate, NOR gate, NAND gate, NAND and NOR as universal gates, XNOR gate,
Half Adder, Full adder, Half subtractor and Full subtractor.07

Suggested Reading

- 1. M.K. Baagde, S.P. Singh and Kamal Singh : Elements of Electronics
- 2. B.L. Theraja : Basic Electronics
- 3. V.K. Mehta : Elements of Electronics
- 4. J.D. Ryder : Networks, Lines and Fields
- 5. J.D. Ryder : Electronic Fundamentals and Applications.
- 6. Millman and Halkias : Integrated Electronics

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Practical Component

- 1. To study the characteristics of integrating and differentiating circuit.
- 2. To draw the characteristics of P-N junction diode.
- 3. To draw the characteristics of PNP and NPN junction transistor.
- 4. Measurements of h-parameters of a transistor.
- 5. Study of different types of Rectifiers and Filters.
- 6. Verification of Network theorems.
- 7. Child Langmuir law.
- 8. Triode/ Tetrode/ Pentode characteristics and constants.
- 9. Study of power supply (Ripple factor).
- 10. Study of Zener diode and regulation (taking different source voltage andloads).

11. To study the Characteristics of a Photo-diode.

Suggested Readings:

- 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.
- 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.
- 3. Indu Prakash: Practical Physics
- 4. S.L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

- 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74
- 2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by

individual Universities

rogramme:	Discipline Sp	ecific Elect	tive		Year: I	II Semeste VI	er:					
Subject: Phy	ysics											
Course Titl	e & Credits	Credit dist	tribution of th	e course	Eligibility	Pre-requisi	te of the					
Code		Lecture	Tutorial	Practical	Criteria	course						
DSE A4: S _f Theory of Relativity	ecial 4	3	0	1	As per the university ordinance	As per the u ordinance	iniversity					
ourse Outc	ome.			I								
3. To un	tz Transformat derstand the M derstand about	laxwell's eq	uations and the ctor and four	neir physical s	lation of current	and continuit	ty equation					
Unit		Topic			•		No. of					
		Topic					Lecture					
Unit I		-	•	•	rames of referen		10					
					-Morley experiment	nt, Postulates	10					
Unit II	•	•		ansformations.		ime dilation						
	-				Consequences of Lorentz Transformations : Length contraction, Time dilation, Velocity transformations and Law of velocity addition, Variation of mass with velocity,							
	Relativistic energy and mass energy equivalence, Concept of four vector, Examples of											
				•								
		nergy and ma	ass energy equi	•								
Unit III	Relativistic er	nergy and ma	ass energy equi	ivalence, Conc		Examples of						
	Relativistic er position and n Electromagn	nergy and ma nomentum fo etic waves	ass energy equipour vectors. : Maxwell's o	ivalence, Conc	ept of four vector,	Examples of tegral forms,	15					
	Relativistic er position and n Electromagne Electromagne waves in free	nergy and ma nomentum fo etic waves tic energy an e space, Maz	ass energy equipour vectors. : Maxwell's of ad Poynting the xwell's equation	ivalence, Conc equations in d corem, Wave ec ons for isotrop	ept of four vector, lifferential and int quations, Plane ele pic, nonisotropic a	Examples of tegral forms, ctromagnetic nd dielectric	15					
	Relativistic er position and n Electromagne waves in free medium, Plan	nergy and ma nomentum fo etic waves tic energy an e space, Maz	ass energy equipour vectors. : Maxwell's of ad Poynting the xwell's equation	ivalence, Conc equations in d corem, Wave ec ons for isotrop	ept of four vector, lifferential and int quations, Plane ele	Examples of tegral forms, ctromagnetic nd dielectric	15					
Unit III	Relativistic er position and n Electromagne waves in free medium, Plan medium.	nergy and ma nomentum fo etic waves tic energy an e space, Mas ne Electroma	ass energy equipour vectors. Maxwell's of ad Poynting the xwell's equation agnetic wave in	equations in d corem, Wave en ons for isotrop n Conducting a	ept of four vector, lifferential and int quations, Plane ele bic, nonisotropic a and non-conductin	Examples of egral forms, ctromagnetic nd dielectric g (dielectric)	15					
	Relativistic er position and n Electromagne Waves in free medium, Plan medium. Relativity of	nergy and ma nomentum fo etic waves tic energy an e space, Maz ne Electroma Electromag	ass energy equipour vectors. : Maxwell's of ad Poynting the xwell's equation gnetic wave in gnetism : Nota	equations in d corem, Wave ex ons for isotrop n Conducting a ations for Four	ept of four vector, lifferential and int quations, Plane ele pic, nonisotropic a	Examples of egral forms, ctromagnetic nd dielectric g (dielectric) nd light like	15					
Unit III	Relativistic er position and n Electromagne waves in free medium, Plan medium. Relativity of separations, E	ergy and ma nomentum fo etic waves tic energy an e space, Maz e Electroma Electromag Energy-Mom	ass energy equipour vectors. : Maxwell's of ad Poynting the xwell's equation gnetic wave in gnetism : Nota entum Four V	ivalence, Conc equations in d corem, Wave en ons for isotrop n Conducting a ations for Four fector, Four ve	ept of four vector, lifferential and int quations, Plane ele bic, nonisotropic a and non-conductin r- vectors, space a	Examples of egral forms, ctromagnetic nd dielectric g (dielectric) nd light like ctromagnetic						

Suggested Reading

- 1. H.S. Mani and Mehta, Introduction to Modern Physics, (Allied East West Press)
- 2. A. Beiser, Perspective of Modern Physics, , (Tata McGraw Hill)
- 3. Ahmad and Lal, Modern Physics (S. Chand and Co.)
- 4. B.V.N. Rao, Modern Physics (New Age International)
- 5. B.B.Laud Electromagnetics (Wiley Eastern limited)
- 6. Berkely Physics course, Vol II "Electricity and Magnetism" (McGraw Hill.)
- 7. A. S. Mahajan and A. Rangwala "Electricity and Magnetism" (Tata McGraw Hill.)

Practical Component

- 1. Speed of light in air.
- 2. To verify the Cauchy's dispersion formula.
- 3. Determination of wavelength using grating and spectrometer.
- 4. Measurement of wavelength difference of Na using Michelson Interferometer.
- 5. Measurement of thickness of mica sheet using Michelson Interferometer.
- 6. To demonstrate interference & Doppler effect in waves.

Suggested Reading:

- 1. Worsnop, B. L., Flint, H. T., "Advanced Practical Physics for Students", Methuen & Co., Ltd.,London
- 2 Panigrahi, S., Mallick, B. "Engineering Practical Physics", Cengage Learning India Pvt. Ltd.,
- 3. Gupta and Kumar, Practical Physics, Pragati Prakashan
- 4. Srivastava, Anchal, and Shukla, R. K., New Age International (P) Ltd

		GE	NERAL ELI	ECTIVE (GE	P6)			
Programme:	General Elec	al Elective Year: III		Year: III Semes				
Course Titl	e & Credits	Credit d	istribution of	f the course	Eligibility	Pre-r	equisite of the	
Code		Lecture	Tutorial	Practical	Criteria	cours	e	
GE P6 : Bas Digital elect		3	1	0	As per University Ordinance	As pe Ordin	r University ance	
ourse outco	ome:	1	L	L				
3. Diffe	nderstand the cor erent type of Log nderstand the dif	ic gates	_					
Unit	Тор	oic					No. of Lectures	
Unit I	Number System number systems, operations, Binar complement and number as electric and vice-versa (In	Binary to y addition 2"s comp cal signals,	decimal conv , Binary subtra lement), Binar Conversion of	version, Doubl avtion, Comple y divison, Rep	e-Dadd method, ement of a numbo presentation of a	Binary er (1"s Binary	15	
Unit II	Boolean Algebra Boolean algebra, Morgan's theorem	BCD, G Laws of	REY, EXCESS Boolean alge		•		10	
Unit III	Logic Gates : Po and transistor OR gates, The AND g Bubbled gates, Th gates, The XNOR	gate, Thre gate, Diode ne NOR ga	e input OR gat AND gate and	te and its truth t d transistor AN	able, Exclusive O D gate, The NOT	R gate,	10	
Unit IV	Combinational Parallel binary ad	Circuits:			lf Adders, Full a	adders,	10	

Suggested Reading

- 1. M.K. Baagde, S.P.Singh and Kamal Singh ,Elements of Electronics ,(S. Chand and Co.)
- 2. B.L.Thereza, Basic Electronics, (S. Chand and Co.)
- 3. V.K.Mehta, Elements of Electronics, (S. Chand and Co.)
- 4. Brophy, Communication Electronics (McGraw-Hill Education)
- 5. R Boylested , Electronic Devices & Circuit theory (PHI)

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Programme: Skill		KILL ENH ment Cours	Γ COURS	 · · · · · · · · · · · · · · · · · · ·	Semester: VI	
Course Title & Code		Credit d Lecture/The ory		the course Hands-or training	Eligibility Criteria	Pre-requisite of the course
SEC P6 Advanced Instrumentation and Measurement Techniques-II	2	1	0	2	As per University Ordinance	As per University Ordinance

Course Outcomes:

To understand the function of analog and digital Multimeter.

Unit	Торіс	No. of Lectures
Unit I	Cathode Ray Oscilloscope: Block diagram of basic CRO. Construction of CRT, Electron gun, electrostatic focusing and acceleration (Explanation only– no mathematical treatment), brief discussion on screen phosphor, visual persistence & chemical composition. Time base operation, synchronization. Front panel controls. Specifications of a CRO and their significance. Use of CRO for the measurement of voltage (dc and ac frequency, time period. Special features of dual trace, introduction to digital oscilloscope, probes. Digital storage Oscilloscope: Block diagram and principle of working.	15
Unit II	Signal and pulse Generators Block diagram, explanation and specifications of low frequency signal generator and pulse generator. Brief idea for testing, specifications. Distortion factor meter, wave analysis.	

Suggested Reading

- 1. B L Theraja : A text book in Electrical Technology
- 2. M G Say : Performance and design of AC machines
- 3. S. Salivahanan& N. S.Kumar : Electronic Devices and Circuits, , 3rd Edn
- 4. Shashi Bhushan Sinha, Handbook of Repair and Maintenance of Domestic Electronics Appliances hand book.
- 5. M. Lotia, Modern Basic Electrical & House Wiring Servicing

<u>OR</u>

Programme: Skill		KILL ENH ment Cours		Semester: VI		
Course Title & Code	Credits	Credit d Lecture/The ory		the course Hands-or training	Eligibility Criteria	Pre-requisite of the course
SEC P6: Electrical circuit network Skills - II	2	1	0	2	As per University Ordinance	As per University Ordinance

Course Outcomes:

To understand the types of electrical circuits and method of making different types of electrical circuits.

Unit	Торіс	No. of Lecture
Unit I	Series-Parallel electrical circuits and Kirchhoff's: Series –parallel circuits, Analysing series-parallel circuits, Opens and Shorts in series- parallel circuits, Voltage division in a complex Series-Parallel circuits. Kirchhoff's laws: Kirchhoff's current law, Kirchhoff's voltage law, Determination of Algebraic sign, Assumed direction of current flow, Solving circuit problems using Kirchhoff's laws.	`15
Unit II	Network Theorems: Concept of electrical Network, Different types of Network Theorems: Superposition Theorem, Application of superposition theorem for solving electrical network problems, Thevenin's Theorem, Procedure for Thevenizing an electrical circuit, Application of Thevenin's theorem, Norton's Theorem, Procedure to Nortonise an electrical circuit, Application of Norton's theorem, Maximum Power Transfer Theorem.	15

Suggested Reading

- 1. B L Theraja : A text book in Electrical Technology
- 2. B L Theraja : A text book in Basic Electronics
- 3. M G Say : Performance and design of AC machines
- 4. S. Salivahanan& N. S.Kumar : Electronic Devices and Circuits, , 3rd Edn
- 5. Shashi Bhushan Sinha, Handbook of Repair and Maintenance of Domestic Electronics Appliances hand book.
- 6. M. Lotia, Modern Basic Electrical & House Wiring Servicing

MASTER OF SCIENCE IN PHYSICS

M. Sc. (Physics)

SYLLABUS FRAMED AS PER THE

NATIONAL EDUCATION POLICY-2024

Programme Outcomes (POs):

Students having Degree in Master of Science should have knowledge of advancedconcepts of Physics and ability to apply this knowledge in various fields of academics, research and industry. They may pursue their future career in the field of academics, research and industry.

Competence in the methods and techniques of calculations using Mathematical Physics, Classical Mechanics, Quantum Mechanics and Communication Electronics. It will develope an analytical skill on an advanced level and will enable the student to have mathematical

PO1 tools to solve complex problems of Physics. The Programme will motivate the student to know more about the matter, the universe and the recent developments in the field of science. The student will have adequate knowledge to work for the industry,, consultancy, education, and research

The students would gain substantial knowledge in various branches of physics. The programme will enable the student to explore more in the field of his/her choice like

PO2 Advanced Electronics, Spectroscopy, Astrophysics and High energy Physics. The student will be well equipped with the knowledge required for different organizations, industry, R& D sector.

Programme specific outcomes (PSOs) PG I YEAR/ Major in Physics

Major in Physics programme provides the student the adequate knowledge, general competence, and analytical skills on an advanced level, needed in industry, consultancy, education, research, or in government organisation.

Programme specific outcomes (PSOs): PG II YEAR/ Master in Physics

- The Master of Science in Physics programme provides student the adequate knowledge to use mathematical tools to solve complex physical problems and have the solid background and experience needed to analyze and solve advanced problems in physics.
- This course would enable the student to acquire scientific skills and the practical knowledge by performing experiments in general physics and electronics.
- The student would also get some research oriented experience by doing theoretical and experimental projects in the last semester under the supervision of faculty.
- The course as a whole opens up several career doors for the students interested in various areas of science and technology in private, public and government sectors. Students may get job opportunities in higher education, research organizations, physics consultancy and many others. Some of the institutions where physics students can start their career are: BARC, DRDO, NPTC, IISc, ISRO, ONGC, BHEL, PRL, NPL, SINP, VECC, IITs, NITs, IIPR etc.

DETAILED SYLLABUS FOR MAJOR IN PHYSICS P.G. FIRST YEAR

Semester: VII MAJOR IN PHYSICS DISCIPLINE SPECIFIC COURSE (DSC A7)

Programme: DIS	SCIPLIN	E SPECIFI	C COURSE Y	ear: IV Sem VII	ester:
Subject: Physics Course Title & Code		Credit d <mark>Lecture</mark>	listribution of the course Tutorial	Eligibility Criteria	Pre-requisite of the course
DSC A7: Mathematical Physics	3	3	0	B.Sc. with Physics	B.Sc. with Physics

Course Outcomes

Students would be able to understand the mathematical methods essential for solving the advanced problems in physics. It would be helpful in the development of the ability to apply the mathematical concepts and techniques to solve the problems in theoretical and experimental physics. The knowledge of mathematical physics would be beneficial in further research and development as it serves as a tool in almost every branch of science and engineering Course.

UNIT	TOPIC	No. of Lecture s
UNIT I	Special Functions Series solution of differential equations, Legendre, Bessel, Hermite, and Laguerre differential equation and related polynomial, physical integral form of polynomials and their orthogonality relations. Generating Function and recurrence relation.	10
UNIT II	Curvilinear Coordinates and Tensors Curvilinear Coordinates and various operators in circular, cylindrical and spherical coordinate systems, classification of Tensors, Rank of a Tensor, covariant and contra-variant tensors, symmetric and anti-symmetric Tensors, Kronecker delta symbol. Contraction of Tensor, metric Tensor and Tensor densities, covariant differentiation and Geodesic equation (variational Method).	10

UNIT III	Complex Variables Function of complex variable, Cauchy's	
	Riemann differential equation, Cauchy's integral theorem,	
	residues and Cauchy's residues theorem, singularities,	10
	evolution of residues and definite integral.	
UNIT IV	Integral Transforms Fourier integral and Fourier Transform,	
	Fourier integral theorem, finite and infinite integral, Laplace	15
	transform of elementary function (Dirac delta & Green's	13
	function), Solution of simple differential equations.	

Suggested Readings:

- 1. B. S. Rajput: Mathematical Physics (Pragati Prakashan, Meerut)
- 2. L. I.Pipes: Mathematical Physics (McGraw Hill)
- 3. P. K. Chattopadhyay: Mathematical Physics (Wiley Eastern, NewDelhi)
- 4. Afriken.: Mathematical methods for Physics
- 5. Harper Charlie: Introduction to Mathematical Physics
- 6. Mathews and Walker: Mathematical Methods of Physics (Benjaminpress)
- 7. Horse and Feshbach : Methods of Theoretical Physics (McGraw Hill)

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

		DISC	CIPLINE SI	PECIFIC ELEC	CTIV	E (DSE	A6)			
Programn	ne: Dis	cipline S	pecific Elect	tive	Ye	ar: IV	Semo VII	ester:	er:	
Course T Code	itle &		Credit disti course	ribution of the					e-requisite the course	
			Lecture	Tutorial						
DSE A6: Classical Mechani	\mathbf{al} \mathbf{a} $\mathbf{B.Sc. with}$ $\mathbf{B.Sc.}$						B.Sc Phys	. with ics		
Course O										
				to apply the				-		
				be the motions			-	-	-	
•				orces and energy ed branches of 1				cnam	cs would	
UNIT	TOPIC No. of						No. of Lectures			
UNIT I	Mechanics of a System of Particles Constraints and generalized coordinates, D Alembert's principle, Lagrange equations for holonomic and non holonomic systems and their applications, conservation laws of linear momentum, energy and angular momentum.						for	10		
UNIT II							15			
UNIT III	space Princi	Dynamics of a Rigid Bodies Motion of a rigid body, body and space Reference system, angular momentum and Inertia tensor, Principle axes- Principle moments of Inertia, spinning tops, Euler angles, Infinitesimal rotations.						10		
UNIT IV	integr and th	al, small	ction, scatter	ction and ang Kepler's laws ing in a Central	of P	•	moti		10	

Suggested Readings:

- 7. H. Goldstein : Classical Mechanics
- 8. N.C. Rana & P. S. Jog : Classical Mechanics
- 9. Landau and Lifshitz : Mechanics, Pergamon Sommerfeld : Mechanics, Academic Press
- Whittaker : Analytical Dynamics of Particles and Rigid Bodies -Cambridge 10.
- Raychaudhuri : Classical Mechanics, Oxford Bhatia : Classical Mechanics, Narosa. 11.

12. H.M. Agrawal: Classical Mechanics, New Age International **Suggested Equivalent Online Courses:**

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Programn	ne: Dis	cipline S	pecific Elec	tive	Year: IV	Semest VII	er:
Course T Code	itle &	Credits	Credit dist course <mark>Lecture</mark>	ribution of the Tutorial	Eligibil Criteria		e-requisit the course
DSE A7: Quantur Mechani	n ics	3	3	0	B.Sc. v Physics		.Sc. with hysics
(atomic and and formu explaining study of	e provi nd nuc ulations g the be a brief mechan	ides an u lear) scal sof quantu ehaviour o review o	e and even um Mechani of all physic of foundatio	g of the behavion smaller. Studen ics. The course, in al systems in the ons of quantum mechanics	nts would lea n fact, plays a universe. The nechanics, m	arn basio an impor e course atrix for	e postulate tant role i includes th mulation o
UNIT				TOPIC			No. of Lecture
UNIT I	Equa Schrö contir orthog packe dimen potent atom.	tion dinger's nuity equ gonality o t, norm asions, c tials, harr	equation, ation, physion of eigen func- alization, entrally sy- nonic oscill	mmetric square ator and itswave	d current d n of wave f of superposition equation in well and h functions, H	lensities, function, function, on, wave n three harmonic	15
UNIT II	I Operator Formulation of Quantum Mechanics State vectors and operators in Hilbert Space, Eigen values and Eigen vectors of an operator, Hermitian ,Unitary and Projection operators, commuting operators, BRA and KET Notations, Postulates of Quantum Mechanics, co-ordinate Momentum and Energy representations, dynamical behavior, Heisenberg, Schrödinger and interaction Pictures					10	
UNIT III	Theor Orbit functi Pauli'	ry of Ang al Angul ons, spac s theory	gular Mom ar momentu e quantiz	entum um operator, its o zation, spin a , Addition of	ngular mor	mentum,	10
UNIT IV			n Methods dent and	Time dependent	Perturbatio	n Theory	[′] 10

independent perturbation theory and its applications.
independent perturbation theory and its appreations.

Suggested Readings

- 1. B. S. Rajput: Advanced Quantum MechanicsSchiff: Quantum Mechanic
- 2. Thankppan: Quantum Mechanics
- 3. Loknathan and Ghatak Quantum Mechanics

Suggested Equivalent Online Courses:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

DISCIPLINE SPECIFIC ELECTIVE (DSE A8)												
Programme	-	-					VII	ester:				
Course Tit Code	tle &	course Criteria			Criteria		Pre-requisi of the cours					
			Lecture	Tutorial								
	DSE A8: Communication Electronics 3 3 0 B.Sc. with Physics						B.Sc. with Physics					
systems. Th transmissio Propagation transmitter,	ne course i n, AM de n of Rac Transmiss	ncludes etection, lio Wav sion Line	Modulation AGC, Rad	c ideas of the fun AM and FM (Tra io receiver cha a, Fundamentals ourse may provi n.	ansmi aracte s of	ssion and ristics, image	l rece FM trans	ption), SSB transmitter, mission,TV				
UNIT			r	-				TOPI No. of				
	CLecturesJNIT IModulation AM and FM (Transmission and reception): Modulation, AM generation, ower consideration, Balanced modulator, SSB transmission, AM detection, AGC, Radio receiver characteristics, signal to noise ratio, FM analysis, noise considerations, generation, direct method and reactance tubemethod, FM transmitter, AFC, FM Propagation, phase discriminator10						Lootures					

UNIT II	Propagation of Radio Waves Ground wave, sky wave and	
	space	10
	wave propagation. Ionosphere (Ecclr- larmer theory, magneto ionic theory.	
UNIT III	Antenna and TV Antenna, HF antenna, Yagi antenna, loop antenna, Satellite communication, parabolic reflector, dish antenna, Fundamentals of image transmission, vestigial transmission, TV camera tubes, image orthicon, vidicon, TV transmitter, TV receiver and picture tubes.	10
UNIT IV	Transmission Lines Voltage and current relations on transmission line, propagation constant, characteristic impedance, impedance matching, quarter wave T/L as impedance transformer, attenuation along coaxial cable, cables of low attenuation, propagation of radio waves between two parallel lines, wave guide modes, TE10 mode and cut off wavelength, cavity resonator, light propagationin cylindrical wave guide, step index and graded index fibers, attenuation and dispersion in fibers	15

Suggested Readings:

- 1. George Kennedy & Davis: Electronics Communication Systems
- 2. Millar & Beasley: Modern Electronics Communication
- 3 R.R Gulani: Monochrome and colour television (Wiley Eastern Limited)
- 4. Taub and Schilling: Principle of Communication Systems (TMH)
- 5. Simon Gaykuti: Communication Systems (John Wiley & Sons Inc. 1994

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

		ral Electiv	VII VII			ester:
Course T Code	itle &	Credits	Credit dis course	tribution of the	Eligibility Criteria	Pre- requisite of
Coue			Lecture	Tutorial		the course
GE P7: Renewab Sources o Energy		3	3	1	B.Sc. with Physics	B.Sc. with Physics
The cours mportanc	e include e. The co	s Fossil fu	els and nucl provide the	c ideas of the Re ear energy, Tidal opportunity to wo	Energy, Solar er	ergy and its
Unit	Topic					
						No. of Lectures
Unit I	it I Fossil fuels and nuclear energy, their limitation, need of renewable energy, non-conventional energy sources. An overview of developments in wind Energy.					
Unit II Tidal Energy, Wave energy systems, Ocean Thermal Energy Conversion, solar energy, biomass, biochemical conversion, biogas generation, geothermal energy tidal energy, Hydroelectricity.				, 15		
Unit III	Solar energy and its importance, storage of solar energy, applications of solar pond and solar energy, solar water heater, flat plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption air conditioning. Need and characteristics of photovoltaic (PV) systems.				15	
Unit IV		nentals of	Wind ener	gy, Wind Turbin ind turbines, P		

Suggested Reading1. Non-conventional energy sources, B.H. Khan, McGraw Hill

- 2. Solar energy, Suhas P Sukhative, Tata McGraw Hill Publishing Company Ltd.
- 3. RenewableEnergy,Powerforasustainablefuture,GodfreyBoyle,3rd Edn., 2012.
- 4. Renewable Energy Sources and Emerging Technologies, Kothari et.al., 2ndEdition, PHI Learning.
- 5. Solar Energy: Resource Assessment Handbook, P Jayakumar, 2009

	GENERAL ELECTIVE (GE P8)							
Programme	e: Gene	eral Elec	tive		Ye	ar: IV Sen		er:
Course Tit	tle &	Credits	Credit distr	ribution of the c	ourse	Eligibility	Pr	e-requisite
Code			Lecture	Tutorial		Criteria	of	the course
GE P8: Radiation Physics		3	3	1		B.Sc. with Physics		Sc. with ysics
Course Outcomes: This course helps the student to gain basic ideas of the Radiation Physics. The c includes Interactions of electrons with matter, fission and fusion. The course may prothe opportunity to work in any organization related Radiation Physics.								
Unit	Торіс	2						No. of Lectures
Unit I	Unit I Interactions of electrons with matter - Specific energy loss, radiative mode of energy loss, electron range and transmission curves. Interaction of gamma rays with matter - Elastic scattering, photoelectric effect, Compton scattering.					ion	15	
Unit II						ass	15	
Unit III						15		
Unit IV	Fissic Cond	on chain itions for al reacto	reaction. Slo r controlled	owing down of n chain reactions eflectors. Brief in	eutroi in bai	ns - moderato re homogeneo	ous	15

Suggested Reading:

- 1. Patel S B, "Nuclear Physics An Introduction" (Wiley Eastern, 1991)
- 2. Krane K S, "Introductory Nuclear Physics" (John Wiley, 1988)
- 3. Roy R K and Nigam P P, "Nuclear Physics Theory and Experiment" (Wiley Eastern Ltd., 1993)
- 4. Singru R M, "Experimental Nuclear Physics" (Wiley Eastern, 1972)
- 5. Zweifel P F, "Reactor Physics", International Student Edn. (McGraw Hill, 1973)
- 6. Kapoor S S and Ramamurthy V S, "Radiation Detectors" (Wiley Eastern, 1986)
- 7. Henry Semat& John R AlBright, "Introduction to Atomic and Nuclear Physics" V Edn. (Chapman & Hall, 1972).

C	e: PRACTICALS Year: IV Semes VII				
Course Title Code	e & Cred	course	ribution of the	Eligibility Criteria	 Pre-requisit of the course
		Practicals	Tutorial		
Practicals	4	4		B.Sc. with Physics	B.Sc. with Physics
Course Outc Student wou Electronicsa	d gain prac	ctical knowled	ge by performing	g various exper	iments of
			List of eriments		No. of Lectures
1.	Study of diagrams	f RC circuit	with an AC s	ource using p	hase
2.	Absorption Photome	-	of KMnO4 us	sing Hilger-Nu	itting 60
3.	Young's	modulus by Ir	terference meth	od.	00
4.	NPN and base (b)	PNP Transist	or Characteristic	es with (a) Com	nmon
5.	Common	n emitter config	gurations/ h – pa	rameter.	
6.	•	RC- coupled B-H curve.	/ Transformer	Coupled Ampl	ifier.
7.	Study Verificat	of Amplitud	le Modulation	n /Demodula	tion.
8.	Hartman	n's Formula.			
9.	Frank-He	ertz experimen	t.e/m by Zeema	n effect.	
10.	Determin	ation of susce	ptibility.Study o	f CRO.	
10.					
10.	Velocity	of Ultrasonic v	waves.Linear Ai	r track.	

Virtual Labs	at Amrita	Vishwa	Vidyapeetham,
https://vlab.an	nrita.edu/?sul	b=1&brch=74	•

Semester: VIII MAJOR IN PHYSICS

Programme	DISCIPLI	NE SPECI	FIC COURSE	Ye	ar: IV	Seme	ester: VIII	
Subject: Ph	ysics							
Course Tit	e Credits	Credit dist	ribution of the co	ourse			Pre-requis	site of th
& Code		Lecture Tutorial Criteria		l	course			
DSC A8: Electrodyr mics	1a 3	3	0		Accordi Univers Ordinan	ity	According University Ordinance	
Course Ou	tcomes:							
The study of	felectrodyna	amics provid	des basic foundati	on fo	r the stud	lent to	understand	d advanc
courses of p	hysics. The	course incl	udes Basic equati	ons o	f Electro	magn	etism, Elec	trostatic
Magnetostat	ics; Maxwe	ll's equation	n, Four Vector F	ormal	lism of 1	Maxw	ell's Equat	ions Fou
vector poten	tial, electron	nagnetic fie	eld tensor and Qua	ntizat	tion of el	lectror	nagnetic en	ergy
UNIT			ΤΟΡΙΟ					No. of Lectur
UNIT I	Electromagnetism: Basic equations; Electrostatics; Magnetostatics; Different Systems of Units, Preliminary notations, four- vectors,Lorentz transformations, time, space and light like separations, Lorentz invariants, Energy and Momentum.					10		
UNIT II	Maxwell's Equations: Maxwell's equation, Displacement current, electromagnetic waves in conducting and nonconducting medium, Poynting theorem, boundary condition at the interface of conducting and non conducting media, propagation between parallel conducting plates. Electromagnetic wave equations					10		
UNIT III						15		
UNIT IV	Electroma potential, (Radiation angular an cases of a velocity;	agnetic Rad Quantization from an Acc d frequency acceleration Larmor's	liation: Lienard-W n of electromagr celerated Charge, I y distributions of parallel and perp formula and its cov radiation	netic Fields fthe e pendic	energy of an ac mitted r cular (ci	(virtua celera adiatio rcular	l photon), ted charge; on, special orbit) to	10

Suggested Readings

- 1. Jackson: Classical electrodynamics; Wiley Eastern, New Delhi
- 2 Landau and Lifshitz: Classical theory of fields; Pergameon Press
- 3. Thide : Electromagnetic field Theory
- 4 Panofsky and Phillips: Classical Electricity and Magnetism
- 5. Landau &Lifshitz : Electrodynamics of Continuous Medi

Suggested Equivalent Online Courses:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

DISCIPLINE SPECIFIC ELECTIVE (DSE A9)							
Programme: Discipline Specific Elective Year: IV Semester: VIII							ester:
Course Title & Code	Credits	Credit distri Lecture	bution of the cou Tutorial	urse	Eligibility Criteria		Pre-requisite of the course
DSE A9: Atomic and Molecular Spectra	3	3	0		Accordin Universit Ordinanc	ÿ	According to University Ordinance

Course Outcomes

The course structure includes atomic and molecular spectroscopy. As per the course structure, the students learn basics concepts of spectroscopic principles and rules. Students would learn technique in spectroscopy and know about their applications. The course is helpful for the students to explore R & D opportunities in various areas of science and technology such as biomedical, industrial and environmental fields.

UNIT	ΤΟΡΙϹ	No. of Lectures
UNIT I	Fine structure of hydrogen spectrum, L-S and J-J coupling,	10
	Spectroscopic terms, Hund's rule and time reversal,	
	Pauli'sexclusion principle.	
UNIT II	Alkali spectra, spin-orbit interaction and fine structure in	10
	alkali Spectra, Equivalent and non-equivalent electrons,	
	Normal and anomalous Zeeman effect, Paschen Back	
	effect,	
	Stark effect, Hyperfine structure (qualitative).	

UNIT III	Molecular spectra of diatomic molecules, Born Oppenheimer approximation, elementary idea of quantization of rotational and vibrational energy, rotational spectra for rigid and non rigid rotations, vibrational spectra (harmonic and an-harmonic), intensity and selection rules and molecular constants.	10
UNIT IV	Atomic Polarizability, Raman spectra, Quantum theory of Raman spectra, Determination of molecular structure, Electronic spectra, band system, Progression and sequences, band head formation, Condon parabola, Franck Condon Principle dissociation energy and its determination	15

Suggested Readings

- 1. C. B. Banwell: Fundamentals of Molecular Spectroscopy Walker and Stranghen: Spectroscopy Vol. I, II, III G.M.
- 2. Barrow: Introduction to Molecular Spectroscopy Herzberg: Spectra of diatomic molecules
- 3. Jeanne L Mchale: Molecular Spectroscopy
- 4. J. M. Brown: Molecular Spectroscopy
- 5. P. F. Bemath: Spectra of atoms and molecules
- 6. J. M. Holias: Modern Spectroscopy
- 7. K. Thyagrajan and A.K. Ghatak: Lasers: Theory and applications A Yariv: Quantum Electronic
- 8. M. D. Levenson: Intoduction to non-linear laser spectroscopy

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
 3. SwayamPrabha DTH Channel,
- **3.** SwayamPrabha DTH https://www.swayamprabha.gov.in/index.php/program/current_he/8

DISCIPLINE SPECIFIC ELECTIVE (DSE A10) Programme: Discipline Specific Elective Year: IV Semester: VIII							
Course Title & Code	Credits	Credit disti course <mark>Lecture</mark>	ribution of the Tutorial		Eligibility Criteria	Pre-requisite of the course	
DSE A10: Nuclear Physics	3	3	0		According to University Ordinance	According to University Ordinance	

Course Outcomes:

In this course students would know about the general properties of nuclei, nuclear forces and detectors, radioactive decay and nuclear reactions. The course builds a foundation for the students to carry out research in the field of nuclear physics, high energy physics, nuclear astrophysics, nuclear reactions and applied nuclear physics.

UNIT	ΤΟΡΙΟ	No. of Lectures
UNIT I	Nuclear Properties and Nuclear Models Concepts of	10
	Atomic Nuclear-Size, Shape, charge distribution, spin	
	& parity, magnetic moment; electric quadrupole	
	moment; binding energy; semi-empirical mass formula,	
	mirror nuclei, Liquid drop model, Experimental	
	evidence for shell effects, Shell model, Magic	
	numbers, Spin orbit coupling, Single particle shell	
	model-its validity and	
	limitations; collective model.	
UNIT II	Nuclear Forces and Nuclear Interactions Theory of	10
	Deuteron and nuclear level properties, nucleon -	
	nucleon interactions, low & high energy nucleon-	
	nucleon scattering, Yukawa's Meson theory of nuclear	
	forces, Spin dependence and charge independence of	
	nuclear	
	forces.	
UNIT III	Nuclear Reactions Kinds of nuclear reactions;	15
	Conservation laws; Nuclear reaction Kinematics;	
	charge particle reaction spectroscopy; neutron	
	spectroscopy; nuclear cross-section; compound	
	nucleus; Nuclear transmutations, continuum theory of	
	nuclear reaction, Nuclear fission, Chain reactions,	
	Nuclear fusion,	
	Thermonuclear reactions.	

UNIT IV	Nuclear Decays Basic understanding of α and β decay,	10
	Fermi theory of beta decay, selection rules in γ decay,	
	Neutrino hypothesis, Parity violation in beta decay, K	
	capture and internal conversion.	

Suggested Readings

- 1. E. Burcham: Nuclear Physics Ervin Kapalan: Nuclear PhysicsRoy & Nigam: Nuclear Physics
- 2. S. N. Ghoshal: Atomic and Nuclear Physics A.Enge: Nuclear Physics
- 3. D. Evans: Nuclear Physics
- 4. E. Segre: Nuclei and Particles
- 5. H.M. Agrawal: Nuclear Physics, PHI Learning

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd SwayamPrabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Programme: Discipline Specific Elective Year: IV Seme VIII						
Course Title & Code	Credits	Credit dist course	ribution of the		Eligibility Criteria	Pre-requisite
Cour		Lecture	Tutorial		Criteria	
DSE A11: Elementary Particle Physics	e 3	3	0		According to University Ordinance	According to University Ordinance
The course is impor- matter and radiation their behaviour. It high-energy physica	n, the inter also provi	udents to lear action amor	ng elementary pa	article	s, and hence,	to understand
UNIT		TOPIC				No. of Lectures
	particles, particles: interaction and conse Isospin, S relation, F	Fundamenta special en s, Strange ervation law trangeness, l Parity, Time plation, CP	assification scher al interactions mphasis on S particles, Reson rs, Lepton and Hypercharge, Ge reversal and c violation in	amon trong ances Bary ll - M harge	g elementary and weak , Symmetries on number. ann Nishijima conjugation	
F n f Z P b	invariance.Particle Models:Fermi Yang model, Sakata model, shortcomings of thesemodels, eight fold way scheme of hadrons: baryons andmesons multiplets, positive and negative aspects of eightfold way scheme, Necessity of Quark model, Gell - MannZweig Quark model and Quark structure of Hadrons,Positive facets of quark model, Elementary idea of charm,bottom and top quarks, Quantum number of quarks,Experimental evidence for the existence of quarks.					
	Symmetry unitary gurepresenta and weigh weight dia and its phy physical fundament U, V spin	, symmetry roups, Spec tion of SU(ts, generato gram of the vsical interpr interpretati- tal and Conj ns, Young	and Young Tab transformation a cial Unitary Gr 2) and SU(3), c rs of SU(2), U(2) fundamental repr etation, Weights on, Weight c ugate representa Tableaux and of young tableau	nd gro oups, liagor 2), SU resenta 6 of S liagra ations unita	bups, basics of fundamental nal generators (3) and U(3) ation of SU(2) U(3) and their uns of the of SU(3), I ry symmetry	

of the tableaux representing different Special Unitary Groups, Dimensionality of the representations of SU(N), Simple product representation using Young Tableaux technique	
Nuclear and Particle Detectors Basic principle of particle detectors, Ionization chamber, Proportional counter, Geiger- Muller Counter, Scintillation counters and-ray spectrometer, semiconductor detector, Nuclear emulsion technique, Cloud, chamber, Bubble chamber	10

Suggested Readings:

- 1. D. H. Perkins: Introduction to High Energy Physics, CambridgeUniversity Press, 2000
- 2. S. N. Ghoshal: Atomic and Nuclear Physics, S. Chand and CompanyLtd, 1994
- 3. D. Griffiths : Introduction of Elementary Particles
- **4.** DB Lichtenberg: Unitary Symmetry and Elementary Particles, Academic Press, 1978 Hughes: Elementary Particles
- 5. Blatt and Weiskopff : Theoretical Nuclear PhysicsFE Close: Quarks and Patrons
- 6. P.P.Cheng and G.LF Li : Gauge Field Theory:
- 7. W. E. Burcham : Nuclear Physics
- 8. R. M. Singru: Introduction to experimental nuclear physics
- 9. E. Segre: Experimental nuclear physics

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- **3.** SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

GENERAL ELECTIVE (GE P9)								
Programme: General Elective Ye						ear: IV Semester: VII		
Course T Code	ïtle &	Credits Credit distribution of the course		L	Eligibility Criteria	Pre-requisite of the course		
GE P9: Physics of Weather and Climate		3	3	1		According to University Ordinance	According to University Ordinance	
	e is imp re. The c	ortant fo course pr		tts to learn abou tform for the stu		•		
Unit	Topic						No. of Lectures	
Unit I	compo variati	osition; ion of	composition	nosphere: physical layering of the temperature is to measure	f the with	atmosphere		
	-	,	ensors: types		an	temperature	, 10	
Unit II	Atmospheric pressure: its measurement; cyclones and anticyclones: its characteristics.Wind; forces acting to produce wind; wind speed direction: units, its direction; measuring wind speed and direction; humidity, clouds and rainfall						15	
Unit III	Radia radiati classif	tion: ab ion laws	sorption, em . Global win ; jet strean	ission and scatte nd systems; air ns; local thunc rnadoes; hurrica	ering i masse dersto	n atmosphere es and fronts	15	
Unit IV	Clima global	ite and i warmin depletio	ts classifica g and its out	tion: Causes of comes; air pollu environmental i	clima tion;	aerosols,	15	

Reference books:

1. Aviation Meteorology, I.C. Joshi, 3rd edition 2014, Himalayan Books

- 2. The weather Observers Hand book, Stephen Burt, 2012, Cambridge University Press.
- 3. Meteorology, S.R. Ghadekar, 2001, Agromet Publishers, Nagpur.
- 4. Text Book of Agro meteorology, S.R. Ghadekar, 2005, Agromet Publishers, Nagpur .

5. Atmosphere and Ocean, John G. Harvey, 1995, The Artemis Press

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel, htt

Program	ne: Gene	eral Elec	tive		Year: IV	Semest	er: VII	
Course 7 Code			and ³ ³ ³ ¹				Pre-requisite of the course	
Digital Electron compute					According t University Ordinance	U	According to Jniversity Ordinance	
architectu	se helps t re. Stud	he studer ents will	l have the	about foundation idea about the es and concept of	different typ	bes of	-	
Unit	Topic	,	J	1	1		No. of Lectures	
	of log unidire memor	ic device ectional ry(semice	es for inter and b	hitecture and its facing 8085/808 bidirectional hagnetic and op	36. Tri state buffers. C	devices, computer	15	
Unit II	Computer Organization and Architecture: Central Processing Unit, computer operating systems. Instruction formats and instructions classification, addressing modes, Timing diagram, op code and operand. Memory mapped input/output and peripheral mapped inputs/outputs. Interrupt structures, Multi-programming.						15	
Unit III	Introduction to microcontroller, RISC and CISC processors.Application of microprocessor: assembly language programming for Addition, subtraction, multiplication, up counter, down counter, delay, stack, subroutines, nesting and time delays. Program execution and debugging. Microprocessor based traffic light controller. Digital to analog and analog to digital convertor.							
Unit IV	Data Interne Area M Charac Channe	Commu et and W Networks eteristics els, Phy	orld Wide V s, Interconn of comm sical Comm	Need for communicated for communicated for communication charmunication charmunication mechanication mechanication mechanication mechanication mechanicated for communication for communicated fo	ation protoco c. Computer anels, Alloca lia, Public S	ls, Local Network ation of Switched		

Suggested Readings:

- 1. Mchilling and Belove: Electronic circuits Discrete and Integrated, Mcgraw Hill
- 2. Millman and Halkias: Electronic Fundamentals & Applications, TataMcgraw
- 3. K.R. Botkar: Integrated Circuits, Khanna Publishers
- 4. G.K. Mithal and Ravi Mittal: Electronic Devices & Circuits, KhannaPublishers
- 5. Malmstadt and Enke: Electronics for scientists
- 6. Taub and Schilling: Principal of communication systems
- 7. Simon Gayukti: Communication Systems
- 8. Martin S. Roden: Analog & Digital Communication Systems
- 9. V. K. Sarkar and D. C. Sarkar: Optoelectronics and Fibre OpticCommunication.

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL)
- https://www.youtube.com/user/nptelhrd 3. SwayamPrabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

			PR	RACTICALS			
Programme: PRACTICALS Year: IV Sem VIII						nester: I	
Course ' Code	Title &		course	ribution of the		Eligibility Criteria	Pre-requisite of the course
			Practical's	Tutorial			
Practica	lls	4	4			According to University Ordinance	According to University Ordinance
Course O	outcome	5	L				
The stude	ent will	have ade	quate know	ledge to perform	n the	experiments	of different
fields ofp	physics w	vith clear	understandi	ng of the theory	behi	nd the experiment	ment.
Student v	vill know	v about v	arious electr	ronic component	ts and	l learn to des	ign some
basicelec	tronic cir	rcuits and	l study their	applications.			
UNIT				List of eriments			No. of Lectures
		1. Study	-	se measuremen	t by		
		•		voltages with L	•	Circuits.	
		2. Study of different oscillators (Hartely, colpit,					
			bridgeoscil				60
		3. Study supply		onically regulat	ed po	ower	
				Feed- back Am	plifi	er.	
		•	0	wavelength (λ	-		
		wavel	lengthdiffer	ence $(\Delta \lambda)$ by M	lichel	son	
			erometer.				
		•		t type of Resista	nces	and Diodes.	
			of Photo V				
			n's Constant characteristi				
			nel's Law	cs			
			chy Formula	1			
			ce Dynamic				
			y of Logic g				
		14. Dete	ction Effici	ency of Diode			
				terferometer			
		16. Four	Probe meth	100			

- Suggested Equivalent Online Courses:
 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74
 2. Digital Platforms /Web Links of other virtual labs may be suggested /added to this lists by individual Universities

DETAILED SYLLABUS FOR MASTER IN PHYSICS P.G. SECOND YEAR

Semester: IX MASTER IN PHYSICS

DISCIPLINE SPECIFIC COURSE (DSC A9) Programme: Discipline Specific Course Year: V Semester: IX								
Course Title & Code	Credits	Credit dist course <mark>Lecture</mark>	ribution of the Tutorial			Pre-requisite of the course		
DSC A9: Advanced Quantum Mechanics	3	3	0		Accordin Universi Ordinano	ty	According to University Ordinance	

Course Outcomes:

The course includes the study of scattering theory, identical particles, relativistic wave equations and quantization of wave fields. The course would describe the nature and behaviour of matter and energy at subatomic level. In particular, theory of scattering gives an understanding collision between a quantum mechanical particle and target. The study of relativistic quantum mechanics enables the students to understand the behaviour of objects moving with speeds comparable to that of light. The knowledge of this field forms the foundation for pursuing research in Quantum Field Theory and High Energy physics.

UNIT	TOPIC	No. of Lectures
UNIT I	Free particle Dirac equation Discrepancies faced by Schrödinger equations, Klein- Gordon equation and its drawbacks, Dirac's equation for a free particle, Dirac matrices, covariant form of Dirac equation, Probability and current densities, Free particle solutions of Dirac equation, Non conservation of Orbital Angular momentum and idea of spin, Interpretation of	10
	negative energy and hole theory	

UNIT II	Dirac particle in Electromagnetic Fields	
	Dirac equation in electromagnetic fields, Magnetic moment of	
	charged particle, Gauge invariance of Dirac equation in	
	electromagnetic fields, Non- relativistic correspondence of	10
	Dirac equation; Pauli equation, Adjoint spinors, Symmetries	10
	of Dirac Equation: Parity, Time reversal and Charge	
	Conjugation; Lorentz covariance of Dirac	
	Equation.	
UNIT III	Identical Particles and Quantum Field Theory	
	Identical particles, exchange degeneracy, symmetric and anti	
	symmetric functions for many particle system Classical	
	Fields, Schwinger's action principle, Lagrangian and	
	Hamiltonian densities, Field equation, quantum structure	15
	of free fields and the particle concept, Quantization	15
	relations, Quantization of non -relativisticSchrödinger matter	
	field, System of identical bosons and fermions, Commutation	
	and anti-commutation relations, Occupation number	
	representation, creation and annihilation operators.	
UNIT IV	Quantum Theory of Scattering	
	Scattering Theory, Scattering cross section, method of partial	
	wave analysis, phase shift, Optical theorem, scattering length,	
	effective range theory; low energy scattering, scattering from	
	a square potential well and a rigid sphere, Born	10
	approximation, Validity of Born approximation, Born	
	approximation through time dependent perturbation, its	
	application to square well potential.	

Suggested Readings:

- 1. Davydov : Quantum Theory Messiah : Quantum Mechanics Vols. I& I
- 2. Rajput B. S. : Advanced Quantum Mechanics
- 3. Ropman P. : Advanced Quantum Mechanics Trigg : Quantum Mechanics
- 4. ThankappanV.K. : Quantum Mechanics Sakurai J.J. : Quantum Mechanics

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

		DISCI	PLINE SPI	ECIFIC ELEC	TIVI	E (DSE	A12)	
C			pecific Elect			ar: V	Seme IX	
Course Tit Code	tle &	Credits	Credit disti course Lecture	ribution of the Tutorial		Eligibil Criteria		Pre-requisite of the course
DSE A12 : Plasma Ph	ysics	3	3	0		Accordi Univers Ordinar	ity	According to University Ordinance
related to p state of ma acquired by	incluc olasma tter an y the	les Mag . Plasma d occur student	a physicists naturally in	dynamics, Plasr study plasmas, stars and interp d in various fic earch. TOPIC	whic planet	h are co tary spa	onside ce .Tł	ered a distinc
UNIT I	Introduction to Plasma Elementary concept of plasma: Debye Shielding, Plasma parameters, Drift of guiding center, Gradient drift, Curvature drift, Magnetic mirror, Plasma confinement							
UNIT II	Magneto-Hydrodynamics and Fluid PlasmaPlasma Oscillation, Fluid equations for a plasma, Continuityequation, Wave Propogation in unmagnetized plasma,Magneto Hydrodynamics , Hydrodynamical description ofPlasma: fundamental equation, Concept of convectivederivative, hydromagnetic waves, magneto- sonic and Alfvenwaves.					10		
UNIT III	Wave veloc electr	city, g romagne e magnet	nena in Mag roup velc tic wave pro	gneto plasma: Decity, cutoff, pagating parallel icon, Faraday	res	onance	for	10
UNIT IV	Elect Propa Propa Deriv Equa	agation agation agation vation of tion, Mo	at finite a through f moment omentum ba	Propagation in I ngle and CMA ionosphere and Equation from lance equation, sma resistivity	A d m Bolt	diag nagnetos zmann		15

Suggested Readings:1. Jackson: Classical Electrodynamics; Wiley Estern, New Delhi

- 2. Bittencourt: Plasma Physics Chen: Plasma Physics
- 3. Robert J Goldston and Paul H. Rutherford: Introduction to PlasmaPhysics

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

DISCIPLINE SPECIFIC ELECTIVE (DSE A13(a1))							
Programme: Disci	ipline Sp	ecific Elect	ive	Ye	ester:		
Course Title & Code	Credits	Credit disti course Lecture	ribution of the Tutorial			Pre-requisite of the course	
DSE A13 (a1): Advanced Electronics- I	3	3	0			According to University Ordinance	

Course Outcomes:

This course helps the students to gain basic ideas of the construction and working of electronic devices and circuits. The course includes the study of IC technology, Operational amplifier as linear Analog systems and non-linear analog systems. The course is of much practical purpose for the students to learn basics of integrated circuit technology which has wide applications in computing, process control, signal processing, communication systems, digital instruments etc.

UNIT	TOPIC	No. of Lectures
UNIT I	Integrated Circuit Technology Advantages & limitations of integrated circuits. Classification of IC's, Fabrication of IC's & components, Basic monolithic integrated circuit technology, processes used in monolithic technology, fabrication of monolithic diodes, integrated resistors, integrated capacitors, metal semiconductor contact, The Schottky transistor, thick & thin film IC's, hybrid IC's.	10
UNIT II	Operational Amplifier(OP-AMP) Basic OP-AMP, Ideal OP-AMP, Inverting & Non inverting OP AMP, OP-AMP internal circuit, Differential amplifier, The emmiter coupled differential amplifier, Common Mode Rejection Ratio (CMRR), Operational Amplifier characteristics, DC characteristics- Offset error voltages and currents, Temperature drift of input offset voltage and current. AC characteristics-Frequency response and stability, Frequency compensation, slew rate, Measurement of OP-AMP parameters.	10
UNIT III	Operational Amplifier Applications Circuit type of OP – AMP 741, Scale changer, Summing Amplifier-Inverting summing amplifier, non-inverting summing amplifier, subtractor, adder subtractor, voltage follower, current to voltage converter, voltage to current converter, OP-AMP circuits using diodes-Half wave rectifier, Full wave rectifier, Peak value detector, Clipper and Clamper, Sample and hold circuits, Logarithmic Amplifier, Antilogarithmic Amplifier, Integrator, Differentiator.	10
UNIT IV	Comparator and Waveform Generators	
---------	---	----
	Comparators, Applications of comparator- Zero crossing detector. Regenerative comparator (Schmitt trigger), Square and triangular, waveform generators, Discriminators, OP- AMP as astable and monostable multivibrator, IC 555 timer- Functional diagram, Monostable operation, Astable operation. Applications in monostable and astable mode-Missing pulse detector, Liner ramp generator, Frequency divider, FSK generator, Pulse-Position modulator, Schmitt Trigger.	15

- 1. Coughlin: Operational Amplifiers and Linear Integrated Circuits.
- 2. Schilling and Belove: Electronic circuits Discrete and Integrated, Mcgraw Hill
- 3. Millman and Halkias: Electronic Fundamentals & Applications, TataMcgraw Hill
- 4. Millman and Halkias: Integrated Electronics K.R. Botkar: IntegratedCircuits, Khanna Publishers G.K.
- 5. Mithal and Ravi Mittal: Electronic Devices & Circuits, KhannaPublishers
- 6. Roychaudhary and Jain: Operational Amplifier & Linear IntegratedCircuits
- 7. V.K. Mehta: Electronics for Scientists & Engineers Robert J Goldston and Paul H. Rutherford: Introduction to Plasma Physics

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

DISCIPLINE SPECIFIC ELECTIVE (DSE A13(b1)) Programme: Discipline Specific Elective Year: V Semester: V V V									
Course Title & Code		Credit disti course <mark>Lecture</mark>	ribution of the Tutorial		Eligibility Criteria	Pre-requisite of the course			
DSE A13 (b1) Astrophysics- I	3	3	0			According to University Ordinance			

Course Outcomes:

The course would be important to understand the spherical astronomy, distance measurement in astrophysics, and physics of solar system and extra solar planets. The course provides an opportunity to understand the optics of the different astronomical instruments such as: telescopes, CCD camera etc. It has wide spared in use of R& D sector.

UNIT	TOPIC	No. of Lectures
UNIT I	Spherical Astronomy Celestial sphere, Celestial coordinate system (equatorial and alt-azimuth): altitude and azimuth, right ascension and declination, hour angle, sidereal time, mean solar time, summer and winter solstice, seasons. Distance measurements: AU, parsec, standard candles, distance measurement by geometric means (parallax, distances to open clusters).	10
UNIT II	Solar System Idea of solar system, Study of planets and their satellites, Earth-Moon system, tidal forces, asteroids, meteors, comets and their origin, composition and dynamical evolution.	10
UNIT III	Telescopes: Basic Optics, Types of telescopes. Telescope mounting systems. Optical telescopes, Infrared, Ultraviolet, X- ray and Gamma-ray telescopes. Schmidt telescopes. Solar telescopes. Design and construction of a simple optical telescopes. Active and adoptive optics in astronomical study. Sky charts and their importance.	10

UNIT	Classification of detectors, characteristics of detectors.	15
IV	Detectors for optical and infrared wavelength regions. Working	
	of Charge Coupled Device (CCD). sensitivity, noise, quantum	
	efficiency, spectral response, Johnson noise, signal to noise	
	ratio, Application of CCD for stellar imaging, photometry and	
	spectroscopy. Importance of space based astronomy.	
	Observational techniques of astronomical sources from space	
	in infrared, EUV, X-ray and Gamma ray regions of the	
	electromagnetic spectrum.	

- 1. Abhyankar K.D.: Astrophysics, Galaxies and Stars VaidyanthBasu : An Introduction to Astrophysics Motz : Astrophysics
- 2. K S Krishnaswamy : Astrophysics: A Modern Perspectiv
- 3. W. M Smart: Spherical Astronomy
- 4. Mark A. Garlick: The Story of the Solar System

- MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
 National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
 SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Programm	e: Disc	ipline S	pecific Elect	tive	Ye	ar: V	Seme IX	ster:
Course Ti Code	tle &	Credits	Credit dist course Lecture	ribution of the Tutorial		Eligibili Criteria	ity	Pre-requisite of the course
DSE A13 High Ene Physics- l	rgy	3	3	0		Accordi Univers Ordinan	ity	According to University Ordinance
particles at higher stud	ould be the m	able un	ic level. Th	complex proper is course would nd high energy P	enco	ourage s		ts to peruse
UNIT				TOPIC				No. of Lectures
UNIT I	Eleme Scalar Hami Charg repres partic	ents of fi r field ltonian ged scal sentation le opera	quantization and field n ar fields and and frequen	Covariant formul n, Lagrangian momentum den nd their quanti icy splitting, Idei ge operator, va	Form sities ization ntifica	nulation, , Neutra n, Morration of v	Field al and nentum various	1 1 1 5
UNIT II	Spino formu Field of Sp splitti associ of van field	r field llation fo Hamilto pinor Fie ng, inclu ated pro rious par moment	r Spinor fiel nian and fiel eld, Momer usion of spi perties, use o ticle operato	iated field equ d, Evaluation of d momentum de ntum representa- in wavefunction of projection ope ors, Charge dens arge operator, v	conju nsitie tion and erators sity fo	igate mo s, Quant and free descript s, Identif or Spino	menta izatior quency tion of icatior r field	, 1 / f 1 ,
UNIT III	Quan EM f theory formu of con densit Identi longit quant	tization field as and i lation fo njugate n nies, Mon fication udinal, t	of Electron a vector fie ts gauge f r EM field, (nomenta, Fie nentum repr of variou temporal an pression of	nagnetic Field eld ,Classical el formulation, Co Quantization of I eld Hamiltonian a resentation and f s particle ope d transverse ph EM field in te	ovaria EM fi and fi freque rators otons	nt Lagr eld, Eva eld mom ency spli s, conce and co	angiar luatior nentum tting, ept or mplete	
UNIT IV	Cova Comr EM fi	riant Fie nutation/ eld oper	eld Algebra Anticommu ators, Covar	for scalar, spin tation relations f iant form of thes t Delta function	or sca se Fie	alar, spin ld algebr	nor and ras and	1 1 10

algebra,	Covariant commutation relations for EM field	
	and problems with temporal photons, Lorentz	
	and consistency with EM field algebra, Resolution	
through G	upta- Bleular formulation and evaluation of the field	
momentun	n and Hamiltonian.	

- 1. L. Ryder : Quantum Field Theory
- 2. B.K. Agarwal : Quantum Mechanics and Field Theory
- 3. F Mandel and Shaw: Quantum Field Theory
- 4. P. Roman: Quantum Field Theory
- 5. A. Das: Quantum Field theory
- 6. M. E. Peskin, D.V. Schroeder : An Introduction to Quantum FieldTheory
- 7. B.S.Rajput : Advanced Quantum mechanics

- MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
 National Programme on Technology Enhanced Learning (NPTEL),
- https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Programme:				IC ELECTIVE	Year: V	Sem	ester:
Course Titl Code	-	-		ribution of the Tutorial	Eligibility Criteria	IX	Pre-requisite of the course
DSE A13 (d Spectrosco		3	3	0	According to University Ordinance)	According to University Ordinance
emitted by properties of the Molecul	red here molecul f the mo ar spec 7, and the	e deals w les. This blecules. etra (rota heir appl	information The course ational, vibrational, known	rvation and inter n can lead into will enable the s ational and elect nowledge acquire or. TOPIC	the knowled tudent to get a tronic spectra	ge of an un a), N	structure and derstanding or MR and ESR
UNIT I	linear rotatio molec coupl functi	, symme onal selectular rota ing, Poso ons of I cter and	tric, spherica ction rules for ation spectra sitive and r linear moleo	tional energy le al and asymmetr or linear molecul Molecular rota negative charact cules, Symmetr weight of hon	tic top molecu es, Stark effect ation-nuclear st ter of the w ric-antisymmet	lles, et in spin vave etric	Lectures 10
UNIT II	Vibra molect and p analys their freque anhar invers	tional cule, cou parallel ba sis in C internal encies a monicity sion do	pling of rota ands, Norma artesian coo l coordinat nd force fie a, degenerat	Vibration spectra ation and vibration al modes of vib- ordinates, normal res, calculation red of H2O and re and non-deger antized Vibratio	on, perpendic pration and t l coordinates of vibratio CO2 molecu nerate vibratio	ular heir and onal iles, ons,	15
UNIT III	Elect Polya Rotati struct - 1Σ Teller theory vibron in ber the	ronic S tomic I ional mo ure of 1 transiti y for abs nic level nzene, Ph concept	Spectra: Spectra: Spectra: Spectra: Spectra: Spectra: Γ and Γ and τ - 1Σ and Γ ions, Vibrosorption spectroscoppotoelectron of nonradia	pectroscopy of Coupling of tomic Molecule Σ onic interaction ctrum of benzer y and lifetime of spectroscopy, Q ative transition sics of Absorpti	Electronic s and Rotatio and Herzh ne vapour, Sin of vibronic le uantum yield s in molecu	ngle vels and lles,	10

	and Phosphorescence.	
UNIT IV	NMR and ESR Spectroscopy (Resonance Spectroscopy): NMR spectroscopy, Bloch Equation, Principle and working of NMR Spectrometer, Basic Principle & Theory of ESR spectroscopy, Resonance conditions, ESR spectrometer, Applications of resonance spectroscopy.	10

- 1. C.N. Banwell: Fundamentals of Molecular Spectroscopy
- 2. Walker and Stranghen: Spectroscopy Vol. I, II, & III
- 3. Herzberg: Spectra of diatomic molecules
- 4. Jeanne L. Mchale: Molecular Spectroscopy
- 5. P.F. Bemath: Spectra of atoms and molecules
- 6. J.M Holias: Modern Spectroscopy
- 7. K. Thyagrajan and A.K. Ghatak: Lasers: Theory and applications
- 8. A Yariv: Quantum Electronics

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),
- https://www.youtube.com/user/nptelhrd
 3. SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

DISCIPLINE SPECIFIC ELECTIVE (DSE A13(e1)) Semester: **Programme: Discipline Specific Elective** Year: V ĪX Course Title & **Credits** Credit distribution of the course Eligibility Pre-requisite Code Criteria of the course Tutorial Lecture 3 3 0 According to According to **DSE A13 (e1):** University University Condensed Ordinance Ordinance Matter Physics-Ι

Course Outcomes:

Topics covered in this paper deals about the Crystal Symmetry, Crystal structure, and idea of nano-materials. This course would encourage students to peruse higher study and research in Condensed Matter Physics.

UNIT	TOPIC	No. of Lectures
UNIT I	Crystal Symmetry: Point group and space group. External symmetry elements (translational, rotational, reflection and inversion) and internal symmetry elements (screw axis and glide plane) of the crystal.Notation of symmetry elements of the crystals, structure of diamond.Non existence of fivefold symmetry in crystals.	
UNIT II	Crystal Structure determination: Introduction and different methods of x-ray diffraction. Structure factor determination of thecrystal (SC, BCC, Base centered, FCC and diamond) and its importance in crystallography. Interpretation of diffraction pattern for determining the structure of the unknown material.Particle size and strain calculation by Williamson- Hall plot method.	
UNIT III	Band theory of solids: Energy bands in solid, distinction between conductor, semi conductor and insulator. Carrier concentration in intrinsic semiconductor. Energy band diagram and Fermi level. Bloch theorem, Kroning-Penny model, concept of hole. Effective mass and its physical interpretation. Tight binding approximation, motion of electrons in one dimensional and three-dimensional lattices. Brillouin zones, density of states.	10
UNIT IV	Modification Methods : Basic idea about nanomaterials and nanotechnology.fabrication of nanomaterials (top down approach, bottom up approach). Modification of crystal properties in nanodimension.Neutron scattering and its applications. Debye Wallerfactor. Hyperfine interactions (isomer shift, quadrupole splitting and magnetic splitting),Mössbauer effect and its applications.quantum size effect,special carbon solids, carbon nano tubes and	

Fullerene.Ion irradiation properties of crystal.	

- **1.** J. Dekker: Solid State Physics
- 2. S.O. Pillai : Solid State Physics
- 3. Kittle : Introduction to Solid State Physics
- 4. Verma & Srivastava : Crystallography for Solid State Physics
- 5. D. Cullity: Elements of X-ray diffraction

Suggested Equivalent Online Courses:

- MIT Open Learning Massachusetts Institute of Technology,<u>https://openlearning.mit.edu/</u>
 National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
 SwayamPrabha DTH Channel,

idea of digital telemetry.

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Programme: Discipline Specific Elective				Year: V	ster:		
Course Title & Credit		Credit distribution of the course				Pre-requisite of the course	
		Lecture	Tutorial				
DSE A14 (a2): Advanced Electronics- II	3	3	0	Accordi Universi Ordinan	ity	According to University Ordinance	
Course Outcomes: This course helps the students to gain basic ideas of the digital communication, optical communication, memory and optoelectronic devices. The course is of much practical purpose for the students to learn advanced concepts of digital communication systems.							
UNIT			TOPIC			No. of Lectures	

Pulse Amplitude Modulation, Pulse Width Modulation,

Pulse position modulation, Pulse code modulation, Delta modulation, Frequency division multiplexing (FDM), Basic 10

81

UNIT II	Optical communication: Principle of optical communication, Light propagation through cylindrical wave guide, Ray paths of planar optical waveguide, Different modes of propagation of E. M. Wave through optical fiber, TE and TM modes, Power associated with a mode, Radiation modes, Excitation of guided modes, Advantages of multimode fibers and cladding, Optical Fiber connectors, Advantages of optical communication.	15
UNIT III	Optical Communication Transmitters, Repeaters and Receivers: Optical Fiber communication transmitters; Semiconductor lasers, Laser diodes and LEDs, Optical gain in a semiconductor, Receivers; Principle of optical detection, PIN photodetector and Avalanche photodiodes, Optical Fiber amplifiers; Optical amplification, Energy levels of erbium ions, Gaussian envelope approximation, Noise in EDFA, EDFAs for WDM transmission.	10
UNIT IV	Memory and Optoelectronic devices: Bulk and thin films, Photoconductive devices (LDR), charge coupled devices (CCDs), LCDS, Memory devices, static and dynamic random access memories SRAM and DRAM, CMOS and NMOS, nonvolatile- NMOS, magnetic, optical and ferromagnetic memories.	10

- 1. Coughlin: Operational Amplifiers and Linear Integrated Circuits.
- 2. Mchilling and Belove: Electronic circuits Discrete and Integrated, Mcgraw Hill
- 3. Millman and Halkias: Electronic Fundamentals & Applications, TataMcgraw
- 4. Millman and Halkias: Integrated Electronics
- 5. K.R. Botkar: Integrated Circuits, Khanna Publishers
- 6. G.K. Mithal and Ravi Mittal: Electronic Devices & Circuits, KhannaPublishers
- 7. Malmstadt and Enke: Electronics for scientists
- 8. Taub and Schilling: Principal of communication systemsSimon Gayukti: Communication Systems
- 9. Martin S. Roden: Analog & Digital Communication Systems
- 10. V. K. Sarkar and D. C. Sarkar: Optoelectronics and Fibre OpticCommunication.

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

	DISC	CIPLIN	E SPECIF	TIC ELECTIVI	E (D S	SE A14(b2))	
Programme: Discipline Specific Elective Year: V Seme IX								ester:
Course Title Code	e &	Credits	Credit dis course Lecture	tribution of the Tutorial		Eligibili Criteria		Pre-requisite of the course
DSE A14 (b Astrophysic		3	3	0		Accordi Univers Ordinan	ity	According to University Ordinance
Course Out			a daapar u	nderstanding of	the	radiativa	tra	asfer and the
	-		-	vould be importa				
				for the deeper				1 2
		•		ly provides the ir		-		
UNIT		ТОРІС						No. of Lectures
UNIT I	Radiation transfer: Definitions of specific intensity, mean intensity, flux and energy density; Equation of radiation transfer; solutions in some specific cases, optical depth; Thermal emission; Blackbody spectrum and its characteristics; Kirchoff's law; Einstein coefficients.10							10
UNIT II	theore Radia radiat opacit Fraun	Interior Properties of Stars Hydrostatic equilibrium, Virial theorem, Polytrophic indices, Lane – Emden equation LTE, Radiative equilibrium, stabilitycondition of convective and radiative equilibrium, Continuous spectra of stars, Stellar opacity, limb darkening, line blanketing, theory of Fraunhofer lines, curve of growth and line broadening.15						
UNIT III	Eleme for wl Pulsar	entary th nite dwar rs, black	eory of wh rf stars, neu holes, low	ite dwarfs, Chan tron stars their b medium mass s stars, supernova	irth a star a	nd prope nd high	rties,	
UNIT IV	AGNs quasa	s and Qurs and the rs and the control of the contro	asi-stellar eir energy	Objects Theory generation and radio lobes and	of A redsl	GNs, Sy nift anoi	naly.	

- 1. Abhyankar K.D.: Astrophysics, Galaxies and Stars
- 2. Vaidyanth Basu: An Introduction to Astrophysics
- 3. Motz: Astrophysics A. R. Choudhuri : Astrophysics for Physicists
- 4. B. D. Abhyankar : An Introduction to Astrophysics
- 5. T. Padmanabhan : Astrophysical Processes

- Suggested Equivalent Online Courses:
 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- **3.** SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Programme	: Discip	line Spe	cific Electiv	ve	Ye	ar: V	Seme	ester:	
Course Tit Code				•		IX Eligibility		Pre-requisite of the course	
DSE A14 (High Ener Physics-II		3	3	0		Accordi Univers Ordinar	ity	According to University Ordinance	
complex pr Higgs mec year 2012. UNIT	operties. hanism v It would	The stu which le open do	the knowled dents will a dents to the deter dents for the	rse Outcomes: edge of basic b also be able to b ection of God pa students who w TOPIC	know article ant to	the cor e in LH(o work i	nplica C expo n the 1	ted theory or eriment in the field of HEP. No. of Lectures	
UNIT I	conserv groups Differe algebra	vation la as Lie C ent diment, Simpl	aws, Defini Broups,,gen Isions and pa e and semi-	lgebra: Symmetion of Lie granerators of the graneter groups- simple Lie groups arms for groups of the groups of th	roups, groups -their oups,	,U(N), s, Lie Al generato Standaro	SU(N) gebra ors and d form) 10	
UNIT II	I, U, commu represe fundam applica for the SU(3) identifi group a SU(4), represe	V spin ntation entations nental tri tion of V (1 0), (, physic cation of and its g reduct entations	subgroups relations of SU(3), plet of SU(3 Young table 0 1), (3, 0), al interpreta of the partic generators, p tion of th of special sy	nd hadrons : S of SU(2) in of shift ope application of) and for baryon aux for finding , (1 1) and (2 1) ation of these we eles of the weig obysical meanin ne Kronecker ymmetry groups e particle state v	SU(rators shift octet out w l) rep veight ght di g of t proc by Y	 multiple multiple irred operator decupility decupility decupility decupility diagram diagram the weig luct of oung tab 	tiplets lucible ors for let etc agram ons of ns and SU(4) thts of two	10	
UNIT III	Gauge connec space, j invaria symme SU(2) isospin	Symm tions: co principle nce, Glo try of gauge n group	etry: Conc pupling of ph of Gauge in obal U(1) Ga QED , Non symmetry, SU(2), No	ept of gauge sysical space with nvariance, Glob auge Invariance n –Abelian Gau conserved is oether's Theon Mill's Field an	fields h inte al and , U(1) uge th ospin rem,	s and (rnal sym d local g) Local neory, C curren SU(2)	ametry gauge gauge Hobal ht for Local	15	
UNIT IV	Sponta Sponta SSB, S	neous neous S SB of (Symmetry Symmetry B Global Gaug	Breaking (S reaking, Mass ge Symmetry, e Symmetry and	SSB): gener Golds	Conce ation that stone B	pt of rough osons	10	

U	fields, elimination of Goldstone Bosons Higgs ism with physical examples and mass generation for
	elds, Higgs bosons.

- 1. E. Close : Quarks and Patrons
- 2. D.C. Cheng and O Neil : Elementary Particle Physics P.Cheng and G.LF Li : Gauge Field Theory
- 3. I.J. Aitchison and A.J. Hey : Gauge theories in Particle Physics
- 4. H. Georgi : Lie Algebras in particle Physics
- 5. D. B. Lichtenberg : Unitary Symmetry and Elementary Particles, Academic Press, 1978

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- **3.** SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

DISCIPLINE SPECIFIC ELECTIVE (DSE A14(d2)) Programme: Discipline Specific Elective Year: V Semester: IX							
Course Title & Code		Credit distri course Lecture	bution of the Tutorial			Pre-requisite of the course	
DSE A14 (d2): Spectroscopy -II	3	3	0			According to University Ordinance	

Course Outcomes:

Laser, the light extraordinary, has so many applications in various field even having further potential and hence it has vital need to familiarize lasers & their technical advances to the students so that students be ready to apply coherent light to solve various problems in areas such as scientific, industrial, healthcare etc. Through this course students will learn about light matter interaction, basic principles of stimulated emission, fundamentals of lasers, types of laser, and applications of lasers in various fields including scientific research to common use. Also, it provides a good understanding of the critical laser parameters important for their use in various real-world applications such as: quantum optics, quantum technologies, telecommunications, and industrial material processing, sensing, biomedicine, imaging, ranging and automobile industry.

UNIT	TOPIC	No. of Lectures
UNIT I	Radiation and Matter: Interaction of radiation with matter, Einstein quantum theory of radiation, Einstein's coefficients, Momentum Transfer, Lifetime, Theory of optical frequencies, Coherence Spatial and temporal and Monochromaticity, kinetics of optical absorption, line width, line broadening mechanisms.	10
UNIT II UNIT III	Basic Elements of Lasers: Laser fundamentals and fabrication – active medium, pumping source and the optical resonator, phenomenon of population Inversion, characteristic of laser light, Spontaneous emission, Stimulated emission, Possibility of amplification, laser pumping and population inversion in three and four level laser, rate equations, Threshold condition, Active resonators & laser modes, gain saturation, Saturable absorption.	15
	of gas lasers, He-Ne laser, N ₂ & CO ₂ lasers, dye lasers, solid state lasers, Nd-YAG, semiconductor lasers, Excimer laser, Tunability of lasers	10
UNIT IV	Applications of Lasers: Basic application of laser spectroscopy, laser cooling and trapping of atoms, Isotope separation, Plasma, Laser Induced Breakdown Spectroscopy (LIBS), Lasers in material processing, laser barcode scanner, Pattern formation by laser etching, LIDAR, lasers in Holography, Interferometry and Microscopy, Communication by Laser, Lasers in Astronomy, Biology, Chemistry, Medicines, Atmospheric optics, optical tweezers	10

- 1. K. Thyagarajan and A.K. Ghatak: Lasers: Theory and applications
- 2. B.B. Laud: Lasers and Non-linear optics
- 3. Orazio Svelto: Principles of Lasers
- 4. Wolfgang Demtröder: Laser Spectroscopy
- 5. M Hollas: Modern Spectroscopy

- MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
 National Programme on Technology Enhanced Learning (NPTEL) https://www.youtube.com/user/nptelhrd
 SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

C	e: Discipline Specific Elective Year: V Seme IX itle & Credits Credit distribution of the Eligibility					
Course Titl Code	e &	Credits	Credit dist course	ribution of the	Eligibility Criteria	Pre-requisite of the course
Couc			Lecture	Tutorial		or the cours
DSE A14 (e Condensed Physics –II	2): Matter	3	3	0	According to University Ordinance	According to University Ordinance
Crystal Symm tudents to p	ed in this netry, Cr	ystal stru	cture, and ic		, and optical prop ials. This course w Matter Physics.	ould encoura
Unit		No. of Lectures				
Unit I	Thermal Properties of solids: Thermal expansion and thermal conductivity in metals, anharmonicity interaction of electrons andphonons with photons (direct and indirect transitions). Theory of specific heat of solids: classical theory (Dulong and Petit law), Einstein's theory of specific heat and Debye's theory of specific heat.					10
Unit II	Magn magne antifer magne Magne interac CMR) applica	15				
Unit III	applications. Optical properties of solids: Luminescence (chemical luminescence, thermoluminescence, electroluminescence),Franck-Condon principle, luminescence efficiency. UV- VIS spectroscopy, energy band gap determination, Raman spectroscopy and its applications. FTIR spectroscopy and determination of mode of vibrations.					10
Unit IV	phenor theorie type-II	menologi es of su Isupercor	ical, semi p perconducto nductors, Lo	oduction of su henomenological ors. Meissner eff ondon equation, Po son effect, Isoto	andmicroscopic ect, Type-I and enetration depth,	10

- **1.** A. J. Dekker: Solid State Physics
- 2. S.O. Pillai : Solid State Physics
- 3. C. Kittle : Introduction to Solid State Physics
- 4. B. D. Cullity: Introduction to Magnetic Materials.

Suggested Equivalent Online Courses:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- **3.** SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

GENERAL ELECTIVE (GE P11(a))

Programme: Genera	l Electiv		Year: V Semester: IX			
Course Title & Code	Credits	Credit distrib course			ty	Pre-requisite of the course
		Lecture	Tutorial			
GE P11: Bio- Physics	4	3	1	Accordir Universi Ordinanc	ty	According to University Ordinance

Course Outcomes:

The course is important for the students to learn about the Basic Concepts in Biophysics. The course provides a platform for the students who have interest in Biophysics.

Unit	Торіс	No. of Lectures
Unit I	Basic Concepts in Biophysics, Elementary ideas about the DNA structure, Forces stabilizing DNA and protein structure, sugar-phosphate backbone, nucleosides and nucleotides, three-dimensional DNA structure, RNA. Proteins: primary, secondary, tertiary and quaternary structures.	15
Unit II	Application of experimental techniques of light scattering (tomography), FTIR and Raman spectroscopy, absorption and fluorescence spectroscopy/ microscopy, anisotropy, optical activity, circular dichroism, electrophoresis,.	15
Unit III	Photobiology: interaction of light with cell and tissues, Photosynthesis, human eye and vision optical biopsy, optical biosensors, Laser tweezers and Laser scissors Photo-dimerization, Photodynamic therapy	15
Unit IV	High doses received in a short time, Low-level doses limits, direct ionization of DNA, radiation damage to DNA, Biological effects (Genetic, Somatic, Cancer and sterlity). Bioimaging: Ultrasound, MRI imaging, confocal fluorescence imaging and X-ray.	15

- 1. Essentials of Biophysics: P. Narayanan.
- 2. Basic Molecular Biology: Price.
- 3. Quantum Mechanics of Molecular Conformations: Pullman (Ed.).
- 4. Non-linear Physics of DNA: Yakushevich.
- 5. Biological Physics: Nelson.
- 6. Spectroscopy of biological systems Modern Spectroscopy: J.M. Hollas.
- 7. Transmission Electron Microscopy of Metals: Gareth Thomas
- 8. Elements of X-ray Diffraction: Bernard Dennis Cullity.
- 9. Atomic Force Microscopy/Scanning Tunneling Microscopy: M.T. Bray, Samuel H. Cohen and Marcia L

OR

GENERAL ELECTIVE (GE P11(b1))							
Programme:	General El	Year: V	Seme	ster: IX			
Course Title & Code	Credits	course	listribution of the	Eligibility Criteria		e-requisite the course	
		Lecture	Tutorial				
(GE P11(b1)): PHOTONICS - I	4	3	1	According to University Ordinance	Acc Univ	ording to versity inance	
Course Outco	mes:	•					
 3. To Class of wave 4. To Diffe 5. To Sum 6. To study 7. To expl Unit 	front erentiate bet marize the i y randomnes ain the conc Copic	ence phen ween Fres dea of pol ss in optic ept of hole	omenon based on divi snel and Fraunhofer di larized light, its genera al waves ography	ffraction ation and dete	ection	nd division No. of Lectures	
d re fi F L	Wave Optics: Interference by division of wavefront and division of amplitude; Phase change on reflection, Stoke's relations; Reflecting and non reflecting films; Colors of thin films. Michelson interferometer; Fabry-Perot interferometer, Fresnel and Fraunhofer diffraction. Single slit, Double slit, Diffraction grating, Resolving power. Fresnel half-period zones and the zone plate. Diffraction of a Gaussian beam.15						
Unit II C	Crystal Op ropagation efraction of nd evanesce	otics: Re of waves e.m.wave ent waves	eview of Maxwell' , Plane polarized light e, Brewster angle; tota s. Reflection by a co	s equations ht. Reflection l internal refle nducting me	n and ection	15	

	Birefringence, Uniaxial crystals; Analysis of polarized light; some polarization devices.	
Unit III	Statistical Optics: Introduction to Probability theory, random variables and probability distribution, Gaussian probability distribution, Wiener–Khinchin theorem, Second order coherence theory of scalar fields, Complex degree of coherence, cross spectral density, Spectral degree of coherence, Wigner function	15
Unit IV	Fourier Optics: Fourier transform operation spatial frequency and transmittance function, spatial-frequency filtering, Phase contrast microscope. Holography: Principle of holography, On- axis and Off-axis hologram recording and reconstruction, types of hologram and some applications.	15

- 1. Optics, Ajoy Ghatak, 6th edition, Tata McGraw Hill, (2017)
- 2. Optics, Eugene Hecht and A R Ganesan, 4th Edition, Pearson Education (2008) (Text)
- 3. Basics of Interferometry P Hariharan, Academic Press(2006)(Text)
- 4. Fundamentals of Optics, Jenkins and White, McGraw Hill Education, 4th edition (2017)
- 5. Introduction to optics and optical imaging C.Scott, Wiley-IEEE Press (1998)
- 6. Optical Electronics Thyagarajan and Ghatak, Cambridge University Press (1997)
- 7. Polarization of light S. Huard, John Wiley and Sons (1997)
- 8. Fundamentals of photonics : Bahaa E.A. Saleh and Malvin Carl Teich, New York: John Wiley, (2007)
- 9. Introduction to Fourier Optics : Joseph W. Goodman
- 10. The Fourier Transform And its Applications to Optics-P M Duffieux, John Wiley Sons 2nd Ed, (1983)

- MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
 National Programme on Technology Enhanced Learning (NPTEL),
- https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Course Tit Code GE P 12: Nanoscien Nanotechr Course Ou The course	ace and nology 1tcomes:		Credit dis course Lecture	tribution of the Tutorial	Eligibil Criteri Accord Univers Ordinar	a ing to sity	Pre-requis of the cour According University	rse
Nanoscien Nanotechr Course Ou	ace and nology 1tcomes:	-		Tutorial	Univers	sity		
Nanoscien Nanotechr Course Ou	ace and nology 1tcomes:	4	3	1	Univers	sity		<u> </u>
							Ordinance	
Nanotechno Unit	Topic						No. of	
Unit I	Carbor Introdu proper	Lect Emergence of Nanotechnology – Challenges in Nanotechnology, Carbon age–New form of carbon (From Graphene sheet to CNT), Introduction to nanomaterials, evolution of nanoscience, general properties of nanomaterials, role of size in nanomaterials, semiconducting nanoparticles,						
							15	
Unit II	Influer magne	nce of tic and c	Nano size chemical pr	Dimensional nance on mechanical coperties of quant rt in quantum wi	, optical, e um dots and	lectron quantu	ic, 15 Im	

	wires, electronic transport in quantum wires and carbon nano	
	tubes (CNT), types of CNT, magnetic behavior of nano particles	
Unit III	Optical Microscopy, Scanning Electron Microscopy,	
	Transmission Electron Microscopy, HRTEM, Atomic Force	
	Microscopy, Scanning Tunneling Microscopy, Optical	15
	Absorption and Emission Spectroscopy, X Ray Diffraction,	
	Raman and FTIR Spectroscopy.	
Unit IV	Molecular electronics and nanoelectronics, Quantum electronic	`
	devices, Carbon Nano Tube based transistor and Field Emission	
	Display, Biological applications, Biochemical sensor, medical	
	applications and Membrane based water purification	15

- 1. C. Kittle: Introduction to Solid State Physics (John Wiley)
- 2. C.Poole and F.J.Owens: Introduction to Nanotechnology (John Wiley)
- 3. T.Varghese and K.M.Balakrishna: Nanotechnolgy: An Introduction to Synthesis, properties and Application of Nanomaterials. (Atlantic)
- 4. G. Schmidt: Nanoparticles: From theory to applications (Wiley Weinheim)

Suggested Equivalent Online Courses:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL) https://www.youtube.com/user/nptelhrd
 3. SwayamPrabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

			PI	RACTICA	LS			
Program	me: PR	ACTICAL	8			Year: V	Seme	ster: IX
Course Code	Title	& Credits	Credit dist course <mark>Practicals</mark>	tribution		Eligibility C	riteria	Pre-requisite of the course
Practica	ls	4	4	0		According to University Ordinance)	According to University Ordinance
physics v	lent wil with cle	l have adeq ar understan	ding of the th	eory behind	d the ex	-	ident w	ferent fields o vill know abou
Unit			List of	Experime	nts			No. of Lectures
	1.	Verificatio	on of Richard	son's law.				
	2.	Study of E	SR spectra o	f a given sa	ample.			
	3.	Hall Effec	t					
	4.	RCS Spec	trometer					
	5.	gamma ra	y spectromete	er				
	6.	Radio Rec	eiver					
	7.	e by Milli	kan's oil drop	method.				
	8.	Temperatu	re dependent	ce of diode	charact	teristics.		60
	9.			•	l by ul	trasonicwaves	S.	
	10.	Study of N	Aultivibrators					
	11.	Study of feedbacka	-	1		cum		
	12.	Study of Spectrophe	absorptio otometer	on of	KMr	nO4		
	13.	Study of d	ifferent FETs	and MOS	FETs.			
	14.	Study of T	hermo lumin	ance.				
	15.	Study of V						

Suggested Equivalent Online Courses:

1. Virtual Labs at AmritaVishwa Vidyapeetham https://vlab.amrita.edu/?sub=1&brch=74

2. Digital Platforms /Web Links of other virtual labs may be suggested/added to this lists by individual Universities

Semester: X MASTER IN PHYSICS

DISCIPLINE SPECIFIC COURSE (DSC A10)

Programme:	Discipline Sp	pecific C	ourse		Ye	ar: V	Sem	ester: X	
Subject: Phy	vsics								
Course Title	e & Code		Credit dist course	tribution of the		Eligibili Criteria		Pre-requ course	isite of the
			Lecture	Tutorial					
DSC A10: Solid State I	Physics	3	3	0		Accordi Universi Ordinan	ity	Accordir Universi	ng to ty Ordinance
symmetries. crystals. Thi superconduc	will be able The student w s course also tivity. The cou	vould gai include urse forn	in insight al s elastic w	estanding of the loout the interior aves, phonons, a local basis of expe	of the and	e substan lattice vi	ces u bratic	sing X-ra	y diffraction in erties and also d technology.
Unit		Горіс							No. of Lectures
Unit I	cell, co-ordin spacing, seve and inelastic conditions, Fo	nation nu n crystal scattering ourier an	imber, latti system. Int gs of x- ray) alysis. Cond	nd non-crystallin ce planes and M reraction of radia). X ray diffractic cept of reciprocal BCC. and FC0	/liller tion v on, Bi lattio	indices. with matt ragg's lav ce point,	Inte er (fo w. Dif calcu	rplanner or elastic ffraction lation of	15
	-	-		ction technique.					
Unit II	0		• •	pes of bonding in & ionic bonding					10

Vander Waal, hydrogen bonding & ionic bonding, Calculation of Madelung constant of ionic crystals, Determination of cohesive energy. Born-Haber cycle of NaCl molecule. Properties of covalent compounds and hybridization. Dispersion and dipole bonds. Thermal expansion and thermal conductivity, anharmonicity interaction of electrons and phonons with photons (direct and	10
indirect transitions).	
Unit III Lattice Vibrations: Vibrations of crystals with monoatomic and diatomic	
basis. Concept of dispersion relation, optical and acoustical branches.	10
Quantization of lattice vibrations (Phonons), normal modes & normal	
coordinates, longitudinal and transverse modes of vibration, modes of	
vibration of monatomic and diatomic lattices. Density of states, Phonon	
momentum, Inelastic scattering by phonons. Theory of specific heat of solids	
: classical theory, Einstein theory and Debye theory. Theory of metals :	
Classical theory, free electron theory and F-D distribution function, Hall	
effect and its applications.	

Unit IV	Crystal Defects: Lattice vacancies, Fick's law, color centers and its
	production method in crystal, Point defects (Schottky & Frankel Defects)
	Imperfections, Line defects (Edge& Screw dislocations), slip, Burger vector
	& Burger Circuit, Role of dislocation in plastic deformation and crystal
	growth. Strength of alloys. Elementary idea of superconductivity, Meissner
	effect, Type-I and type-II superconductors, BCS theory. Theory of
	ferrimagnetism, ferromagnetism and antiferromagnetism.

10

Suggested Readings:

- 1. A. J. Dekker: Solid State Physics
- 2. S.O. Pillai : Solid State Physics
- 3. C. Kittle : Introduction to Solid State Physic
- 4. Verma & Srivastava : Crystallography for Solid State Physics

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- **3.** SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

	DISCIPLINE SPECIFIC ELECTIVE (DSE A15)										
Programme	e: Disc	ipline S	pecific Elect	tive	Ye	ar: V	Seme	ester:	: X		
Course Tit Code			Credit dist course	Credit distribution of the		Eligibili Criteria			requisite of course		
			Lecture	Tutorial							
DSE A15: Statistical Physics		3	3	0		Accordii Universi Ordinan	ty	Univ	ording to versity nance		
properties a	helps and dif	the stud ferent st	atistical mo	about foundati dels. Students v tics namely M-I	will h	ave the i	dea a	bout	the different		
Unit	Topi	с							No. of Lectures		
Unit I	Foundation of Statistical Mechanics Microscopic and macroscopic states, density of states, micro- canonical, canonical and grand canonical ensembles, canonical ensemble and Gibb's distribution, Boltzmann–Planck method, partition function and statistical definition of thermodynamic quantities, computation of partition functions of some standard systems.							al d, ic	10		
Unit II	Syste	m of l		onic oscillator l ensemble and							

	chemical potential; Partition function and distribution for perfect gas; Gibb's paradox; Free energy, entropy, equation of state and specific heat determination of perfect gas.	15
Unit III	Statistical Models Theory of phase transitions, First order phase transition, Second order phase transitions and higher order phase transitions (elementary discussion), Ising model, one dimensional (with exact solution), Two dimensional (with exact solution) & three dimensional model (elementary idea), Landau theory of phase transition, Weiss theory of Ferro- magnetism, Heisenberg model. Virial equation of states.	10
Unit IV	Quantum Statistics Bose-Einstein and Fermi- Dirac distributions, degeneracy, gas degeneration, degenerate Bose gas, Bose Einstein condensation, highly degenerate B-E and F-D gases; examples of Molecular Hydrogen, liquid helium and electron gas in metals.	10

- 1. A.S. Davidov: Quantum Mechanics
- 2. Paul Roman: Quantum Mechanics
- 3. Glastohn Theoretical Chemistry
- 4. Landau and Lifshitz: Statistical Mechanics
- **5.** Pathira: Statistical Mechanics
- **6.** Huang: Statistical Mechanics

- MIT Open Learning Massachusetts Institute of Technology,<u>https://openlearning.mit.edu/</u>
 National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- **3.** SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

	DIS	CIPLIN	E SPECIF	IC ELECT	IVE	(DSE A16 (a	3))	
Programm	e: Discipli	ne Speci	fic Elective		Y	ear: V Seme	ster: X	
Course Title & Code		Credits	Credit dist course	ribution of		Eligibility Criteria	Pre-re the cou	quisite of 1rse
			Lecture	Tutoria	l	-		
DSE A16 Advanceo Electroni	1	3	3	0		According to University Ordinance	Accord Univer Ordina	sity
microwav	se helps th e productio	n and m	-		-	ots of power s has wide applie		-
Industry a Unit	nd Research	1.						No. of Lecture
Unit I	reference and over Precision	source, ' load pr rectifier, power s	regulation The 723 reg rotection, C , Three term upplies usin	ulator, curre current Fold inal voltage	ation ent re lback regu	eries Regul al Amplifier, gulator, short , Current Bo lations, dual P XX series reg	circuit osting, olarity	10
Unit II	Switchin supply (S filters, RC Low pass frequency Active fil in range,	g Regula MPS), A C Active and Hi respons ters, Not Captur	ators and A active filters; filters, First gh pass active and Gain ch and wide re range, P	advantages order, seco ve filters, V roll-off, Na band reject	and nd or olta rrow Activ Pha	witched mode limitations of der and higher ge transfer fur and wide ban ve filters, PLL; ase detectors,	Active r order nction, d pass Lock-	15
Unit III	Microwa devices a modulatio klystron, focusing tube (TW	ve Prod at UHF, on and c Theory effect, fr /T), Sem	luction: Lin Microwave urrent modu and uses of requency pu	mitation of e frequencie alation, Mul cavity mag alling and p microwave	conv es, P ticav gnetro oushin	vectional electrinciple of vertice ver	elocity Reflex Phase -Wave	10
Unit IV	Microway microway problem, in micro	ve trans ves, atmo ground r wave co	mission, lo ospheric eff reflection, Fa	oss in free fects on pro ading, Anter n system;	spa oroga ina a	nd Disadvanta ice, propagati ition , Fresne ction, Antenna nnas with par	on of l zone as used	10

- 1. Coughlin: Operational Amplifiers and Linear Integrated Circuits.
- 2. Schilling & Belove: Electronic circuits Discrete and Integrated, Mcgraw Hill
- 3. Millman & Halkias: Electronic Fundamentals & Applications, Tata Mcgraw Hill
- 4. Millman & Halkias: Integrated Electronics
- 5. R. Botkar: Integrated Circuits, Khanna Publishers
- 6. V.K. Mithal& Ravi Mittal: Electronic Devices & Circuits, Khanna Publishers
- 7. Malmstadt &Enke: Electronics for scientists
- 8. Taub & Schilling: Principal of communication systems
- 9. Simon Gayukti: Communication Systems
- 10. Martin S. Roden: Analog & Digital Communication Systems
- 11. Terman: Electronic & Radio Engineering

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL)
- https://www.youtube.com/user/nptelhrd
 SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

	D	ISCIPL	INE SPEC	CIFIC ELECTI	VE (DS	E A16 (b3	3))	
Programme:]	Discipli	ine Spec	ific Elective	2	Year:	V	Semest	ter: X
Course Title & Code			Credit dist course	ribution of the	Elig Crit	ibility eria	Pre-requisite of t	
			Lecture	Tutorial				
Astrophysics DSE A16 (b3	-III 3)	3	3	0	Univ	ording to versity nance	Accord Univer Ordina	sity
Course Outc	,	1					1	
This course p	rovides	the basi	c physical n	nechanisms abou	it the sola	ar activitie	es, whic	h will help to
probe the	Sun-	Earth	connectio		dy pro		ne kn	owledge of
Astroseismolo	ogy, cla	assification	on of stars a	nd the distribution	on in Gal	axies.		
UNIT	ΤΟΡΙΟ					No. of Lectures		
UNIT I	photos time s scatter photos Quiet Solar (CME Coron Astros Introd	spheric al scale, nu ing, me sphere, cl and Acti flares, S s), Sola al heatin seismolog uction to	bsorption lir clear fusion an free pa hromosphere ve Sun, Sur olar filame r wind, Di ng, Solar C gy, Descript variable sta	ctrum, effective nes, limb darkeni n; energy transp ath, photon dir e, transition regi- nspots, their form nts/prominences fferent type of ycle, General ic ion about p-mod urs and their loca	ng; energ ort in th ffusion i on, coron nation an , Corona solar en dea of e and g-n tions in H	gy source: e sun, Th inside the a. d magneti l mass ej ruptions r Heliosesn node oscil I-R diagra	Kelvin nomson e Sun; c field, ections nodels, nology, lations, um.	15
	JNIT IIIThe Milky way and Other Galaxies Distributions of stars in the Milky way, Morphology, Kinematics, Interstellar medium, Galactic center. External galaxies, Types of galaxies: spirals, ellipticals and irregulars, Hubble classification for galaxies, 21cm line, rotation cure, dark matter.10JNIT IVPrinciple of equivalence and principle of general covariance, Principal of general gravitational field, Metric tensor and gravity, Geodesics, Christoffel symbols, Space- time curvature and curvature tensor, Riemann curvature tensor, Bianchi identity, Ricci tensor, Einstein's field equations , Centrally Symmetric Fields, Metric in spherically symmetric space-time (Schwarzchild metric).10							

- 1. Stix: The Sun: An Introduction
- 2. K. D. Abhyankar : Astrophysics: Stars and Galaxies
- 3. T. Padmanabhan : Galaxies and Cosmology Motz : Astrophysics
- 4. I. Zhelyazkov and R. Chandra : Kelvin_Helmholtz Instability In Solar Atmosphere Jets, Word Scientific
- 5. R. K. Pathria, The Theory of Relativity, Hindustan Publishing Corpn, (India

Suggested Equivalent Online Courses:

- 1. MIT Open Learning Massachusetts Institute of Technology, <u>https://openlearning.mit.edu/</u>
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

DISCIPLINE SPECIFIC ELECTIVE (DSE A16 (c3))

Programme: Discipli	ne Spec	ific Elective	Y	'ear: V	Semester: X
Course Title & Code		Credit disti course Lecture	ribution of the Tutorial		Pre-requisite of the course
DSE A16 (c3): High Energy Physics-III	3	3	0	According to University Ordinance	According to University Ordinance

Course Outcomes:

The course would provide the knowledge of advanced concepts of HEP. The students will be able to know the complicated theory of Relativistic propagators, S matrix expansion and S matrix formulation of QED. It would open doors for the students who want to work in thefield of HEP.

UNIT	TOPIC	No. of Lectures
UNIT I	Relativistic Propagators Relativistic propagators using quantized formulation of free fields, Properties of quantized scalar fields(Real and complex cases), Algebra of field operators, covariant form of the field operators algebras, (Covariant commutation relations), Meson propagator and its characteristics, Properties of quantized spinor fields, Algebras of spinor field operator, Covariant form of anti-commutation relations, Fermion propagator and its characteristics, properties of quantized EM field, Covariant commutation relations of EM field operators, Photon propagator and its characteristics, EM interaction in terms of radiation field and instantaneous coulomb fields.	
UNIT II	Operator Products, Feynman Propagators and S-matrix Expansion Various type of operator products (Normal, Dyson products and Chronological T-products), Wick's theorem, Feynman propagators and its physical interpretation, Interacting fields, S-Matrix formulation as a perturbative series solution of collision processes, Dyson expansion of S-matrix.	10

UNIT III	S-matrix Formulation of QED Interaction Hamiltonian in QED, Reduction of S-matrix for the case of QED, Representation and description of various first and second order processes in QED using S-matrix expansion.	10
UNIT IV	Compton scattering, Moller scattering, Bhabha scattering, Electron self energy, Photon self-energy, vacuum configuration in QED, Feynman diagrams and Feynman Rules in QED.	

- **1.** Ryder : Quantum Field Theory
- 2 B.K. Agarwal: Quantum Mechanics and Field Theory
- 3. F Mandel and G. Shaw: Quantum Field Theory
- 4. Roman: Quantum Field Theory
- 5. A. Das: Quantum Field theory
- 6. M. E. Peskin, D.V. Schroeder: An Introduction to Quantum FieldTheory

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Program	ne: Discipli	ne Spec	ific Elective	2	Year: V	Semes	ter: X
Course 7 Code	fitle &	Credits	Credit dist course <mark>Lecture</mark>	ribution of the Tutorial	Eligibility Criteria		
-	scopy-III	3	3	0	According to University Ordinance	Accor Univer Ordina	
group the Also, afte technique	this coursew ory, mechai er attending s and recent	the cou advance	aind the absource a stude as in fluores	t a deep knowledg orption and emiss ent will be acqua cence spectroscop	ion of photon ar inted with fluor by.	nd relate rescence	d phenomena measuremen
Knowledg UNIT	ge acquired	by the c	ourse will t	be of much use for TOPIC	r various industri	es and R	No. of
UNIT I	Molecule	. Cumm	otnics and A	Group Theory:	Summating Duama	rtios of	Lectures
	character irreducible Huckel ap	table, G1 e represe proxima	roup theory: ntations, LC tion, overlap	, symmetry operative representation of CAO coefficient of p and resonance in	a group, reduci a polyatomic mo ntegrals.	ble and blecule,	10
UNIT II	spectrosco Mechanist nonradiati rule, Osc quantum y spectra, T sensing ar	ppy, diffe n of t ve proce illator s yield, Er ime scal id quencl	erential abso fluorescence esses, Jablon strength, St ivironmenta le of molec hing, Fluore	and Fluorescence orption spectrosco e emission and nski diagram, Ka oke's shift, Fluo l effects on absor- ular processes in escence polarisatio	py(circular Dich decay, radiat sha rule, Mirror prescence lifetin rption and fluore solution, Fluore on and Anisotrop	roism), ive & image ne and escence escence y.	15
UNIT III	Absorptio spectropho resolved f Correlated Monochro Excitation of Fluore	n, Exc otometer luorome Singl mator, & Emis scence (itation an , Basic ins ter, An ide e Photon Optical filte sion spectra Corrected F	ption and Fluor ad Emission s strumentation of al spectrofluorom Counting (TC ers, Photomultipli , Photon counting luorescence spect ad time resolved m	spectra, UV steady state an neter, Principle of SPC), Light er tubes, Distrib versus Analog d tra, Circular Dio	 Vis nd time of Time sources, ution in letection 	10
UNIT IV	Advances lifetime i Spectrosco	in Flu maging, opy an	orescence S Theory an d Single	Spectroscopy: Co d principle of F molecule fluor pectroscopy.	oncept of fluor luorescence Cor		

- 1. Barrow G.M: Introduction to Molecular spectroscopy; McgrawHill
- 2. Herzberg G: Infrared and Raman Spectra of Polyatomic Molecules;
- 3. Von Nostrand Herzberg G: Spectra of Polyatomic Molecules;
- 4. J. R. Lackowicz: Principle of Fluorescence
- 5. Bernard Valeur and Mário Nuno Berberan-Santos: Molecular fluorescence (Principles and Applications)
- 6. King G.W: Spectroscopy and Molecular Structure

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Programme:					E (DSE A16(e3) Year: V Se IX) mester:
Course Title Code	e &		Credit distr course Lecture	ribution of the Tutorial	Eligibility Criteria	Pre-requisite of the course
DSE A16(e3 Condensed Matter Phys III	ŕ	3	3	0	According University Ordinance	
Topics covere	ed in t	his nane		ourse Outcomes:		Crystallography
and Microsco	py & \$	Surface '	Topography		uld encourage st	
UNIT				ΤΟΡΙΟ		No of

UNIT	ΤΟΡΙΟ	No. of Lectures
	Dielectric properties of matter: Polarization (ionic, electronic, orientation) Dielectric and ferroelectric properties of matter, polarizability, Clauses-Mossotti relation. Temperature dependence and frequency dependence of dielectric constant, dielectric loss and dielectric strength, Piezoelectricity. Langevin's theory of polarization.	15

UNIT II	Advance Methods of Crystallography: Different sources of error in Powder method of X-ray photography, Determination of errorfunction for powder method, Accurate determination of lattice parameter, Applications of powder method, Moving film methods and advance methods of crystallography	10
UNIT III	Methods of Microscopy and Surface Topography: Observation of surface imperfections using X-ray, Electron microscopy: Transmission Electron Microscopy, Surface Scanning Electron Microscopy and Scanning- TunnelingElectron Microscopy, Atomic force microscopy (AFM).	
UNIT IV	Discarded Systems: Concept of order, long range and short- range order, Concept of impurity states in condensed matter system, Shallow impurity states in semi conductor, deep traps in condense matter systems, colourcentre of an ionic crystal system, Disorder in condensed Matter system: substitutional positional and topological disorders.	

- 1. C. S. Kittel: Introduction to solid state Physics.
- 2. C. S. Kittel: Quantum theory of Solids.
- 3. Verma and Srivastava: Crystallography for solid state Physicists.
- 4. Madelung: Solid State Physics.

- 3. SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

e	-	-	ific Elective			ar: V		ester: X	
Course Ti Code	tle &	Credits Credit distribution of the course			Eligibili Criteria		Pre-requ course	uisite of the	
			Lecture	Tutorial			•	course	
DSE A17 Advanced Electroni	1	3	3	0		Accordi Univers Ordinan	ity	Accordin Universi Ordinan	ty
devices an and analog of digital e	e helps the d circuits. computation lectronics.	The cou on. The The digi	rse includes course is of r ital electroni	usic ideas of the the study of co much practical pu cs have wide app s, digital instrum	mbin urposo olicati	ational c e for the ions in c	circuit stude	s, sequer nts to lear	ntial circuit
UNIT				TOPIC					No. of Lectures
UNIT I	coefficier computer	of ord nts, Oper s, Time	dinary lines ation modes e scaling,	ar differential of analog compu- amplitude scali n of functions, S	uters, ng,	repetitiv Combine	ve ope ed ti	ration of me and	10
UNIT II	Canonica simplifica maps fro implement prime im	l and ation of 2 om truth ntations. aplicants	Boolean equ 1 tables, d The Tabula	orms of Bool ations. Karnaug on't care cond tion method, Det tion of Digital	h ma itions ermii	ps, Cons , NAN nation ar	tructi D an nd sele	on of K- d NOR	15
UNIT III	Combina Adders & Parallel a bit genera	ational (Subtrac dders, E ator and	C ircuits ctors, Magni ncoders, Dec checker, Re	tude comparator, coders, Multiplez ead only memory cogical Array(PL	xers,] y (PR	Demulti	plexer		10
UNIT IV	Sequenti Sequentia Edge trig synchron Semicond	al Circu al logic- gered Fl ous and luctor R ic; Logic	its Memory ele ip flop; Reg Asynchrono andom Acce and Shift N	ement, RS, JK, JH isters; Shift regis us; The memory ess Memory; Inte ficro-operation;	KMS, ster; C unit; er-reg	Counters- ister tran			10

- 1. Morris Mano: Digital Logic & Computer Design
- 2. Rajaraman: Introduction to Digital Computer design
- 3. Malvino& Leech Sloan: Computer Hardware & Organization
- 4. V. Rajaraman: Analog Computation & Simulation Integrated Circuits.
- 5. Schilling & Belove: Electronic circuits Discrete and Integrated, Mcgraw Hill
- 6. Millman & Halkias: Electronic Fundamentals & Applications, TataMcgraw Hill

- 7. Millman & Halkias: Integrated Electronics
- 8. K.R. Botkar: Integrated Circuits, Khanna Publisher
- 9. G.K. Mithal& Ravi Mittal: Electronic Devices & Circuits, KhannaPublisher

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Programme	: Discipli	ne Spec	ific Elective	e	Ye	ar: V	Seme	ester: 1	X
Course Tit Code	le &	Credits		ribution of the					equisite of th
Coue			course Lecture	Tutorial		Criteria	1	cours	e
DSE A17 (b4): Astrophysics-IV		3	3	0		Accordi Univers Ordinar	ity	Accor Unive Ordin	ersity
Course Ou									
	-		1 1	ties of stars, birt					
	-		-	nding about the		clusters	and t	heir p	properties, e.g
5	and mass	function	, mass-lumi	nosity relations e	etc.				N T 0
UNIT	TOPIC					No. of Lectures			
UNIT I	Basic	Basic Properties of Stars: Mass, radius, distance, luminosity,							
	tempera	temperature, magnitude system, Wien-displacement colour indices,							
	filters, H-R diagram, classification of stellar spectra, luminosity								10
	classification, stellar motion, stellar populations								
UNIT II	Star Formation and Stellar Evolution: Birth of stars, protostar, Pre-								
	main sequence evolution: Jeans instability, star formation, Hayashi								
	track, Zero age main sequence (ZAMS), Post-main sequence								
		evolution: Core He burning, shell burning, red giant phase, planetary							
		nebulae, white dwarf physics, electron degeneracy pressure, energy							
	-	generation in stars – gravitational contraction, pp chain, CNO cycle and triple alpha process, stellar life, cycles-Premain sequence, main							
	-	-	•	enai me, cycles-	I ICIII	ani sequ	ence,	mam	
UNIT III	sequence, giants. Star Cluster and their Properties : Open clusters, globular clusters and								
		the galaxy itself are examples of 'stellar systems'; crossing time;							
	mean potential and total potential energy in a constant density sphere;								10
	-		-	-body stellar sy			• •		
				-					1

	population, population I and II type objects, inter-stellar extension, reddening determination from color color diagram, age and distance determination of star clusters, luminosity function, mass function, mass segregation, mass-luminosity relation.	
UNIT IV	Cosmological Models: Universe at large scales – Homogeneity and isotropy – distance ladder – Newtonian cosmology - expansion and redshift - Cosmological Principle - Hubble's law - Robertson-Walker metric - Observable quantities – luminosity and angular diameter distances - Horizon distance- Dynamics of Friedman- Robertson- Walker models: Friedmann equations, Weyl's postulate, Big-bang and steady state models of the universe.	10

- 1. Abhyankar K.D. : Astrophysics, Galaxies and Stars
- 2. Vaidyanth Basu : An Introduction to Astrophysics
- 3. Motz : Astrophysics
- 4. T. Padmanabhan : Stars and Stellar Systems
- 5. L Kutner: Astronomy: A Physical Perspective

Suggested Equivalent Online Courses:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),
- https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

	DIS	SCIPLIN	E SPEC	IFIC ELECTIV	/E (I	DSE A17	7 (c4))	
Programme	Disciplin	ne Specifi	c Elective	;	Ye	ar: V	Sem	ester:	X
Course Titl Code	e &		ts Credit distribution of the course)			Pre-r cours	requisite of the se
			Lecture	Tutorial					
DSE A17 (c4): High Energy Physics-IV		3	3	0		Accordi Universi Ordinan	ity	Acco Unive Ordir	ersity
	would pro able to lea		e	e of some more a ry of weak intera			-		
UNIT				TOPIC					No. of Lectures
UNIT I	Quarks and Gluons: Quark-Lepton Symmetry, Theoretical and experimental need of charm quark, J/p and Charm, Three generations of quark and leptons: from bottom to Top quark, Positive facets of quark model, Paradoxes of the Naive Quark Model, Need of color quantum number for Quarks, Gluons, Standard Model and Fundamental Particles, Symmetry and Quark model, Color octet and singlet of Gluons, diquark and exotic hadrons, Color SU(3), SU(3) color ladder operators, concept of colorless hadrons.							hree hark, uark ons, uark totic ot of	10
UNIT II	QCD La of 8 cor QCD ,b Experim hadrons	grangian, nserved c asic idea nental ind and conc	SU(3) glo urrents, S of Asym- ication fo cept of con	asic difference be obal color gauge SU(3) local color ptotic freedom a r quarks and gl nfinement of Qu ories.	invar rgau and P uons,	iance an ge symr erturbati String	d con netry ive Q mode	cept and CD, el of	10
Hadrons and Regge Trajectories.UNIT IIIWeak Interaction: Classification of weak interaction in terms of Leptonic, Semi-leptonic and non-leptonic weak Decays, Fermi Non relativistic theory of beta decay, Fermi &Gammow Teller transitions and their selection rules, Parity violation in weak interaction, Helicity of particle, Helicity operator, Two component theory of Neutrinos, Fermi's relativistic theory of beta decay, concept of weak hadron current and lepton current, Current- Current Interaction and V-A theory.							15		
UNIT IV	Weak C interacti theory, lepton U bosons a Conserv Idea of	Gauge Bo ons, Inter Cabibbo Iniversalit as weak g ation of Unificatio	osons & V rmediate V angle, Co ty, Weak I auge boso Vector C on of Fund	Weak currents: Vector Boson (I nsequences of C sospin and weak ons, Charged and urrent (CVC) H damental Interac reak unification	VB) Cabib hype neut	concept, bo theorercharge, ral weak hesis, El	Cab y, Q W an curre	ibbo uark nd Z ents, tary	10

Suggested Readings:1. E Close : Quarks and Patrons2. I.J. Aitchison and A.J. Hey : Gaugetheories in Particle Physics

- 3. F. Haltzin& A.D. Martin : Quarks and Leptons
- 4. D.H. Perkins : Introduction of High Energy Physics, Cambridge University Press 2000
- 5. P.Cheng and G.LF Li : Gauge Field TheoryED Commins : Weak Interactions
- 6. D.C. Cheng and O Neil : Elementary Particle Physics

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

	D	ISCIPLI	NE SPEC	CIFIC ELECT	IVE	DSE A1	7 (d4)		
Programme	Programme: Discipline Specific Elective Year: V Semester: X									
Course Tit Code	le &	Credits Credit distribution of th course Lecture Tutorial			e	~ ~ ~ ~		Pre-req course	uisite of the	
DSE A17 (Spectrosco		3	3	0		Accordi Univers Ordinan	ity	Accordin Universi Ordinan	ity	
			Co	ourse Outcomes	:					
course prov and spectro outcome ur knowledge Knowledge	ides studer scopy app nder light about holo	nts with k lications. matter ir graphy, n	nowledge Students nteraction nultiphotor	on of electroma of laser physics will be learnin in nonlinear m n processes, Ran e of much use for	and ing different difference of the difference o	ntroduce fferent n In addi cattering	s then onlin tion, , Ram	m to nonl ear proc they wil nan spect	linear optics esses as an 1 also have roscopy etc. D sector.	
UNIT	TOPIC						No. of Lectures			
UNIT I	giant pul dynamics hole burr	se, Q-sw , laser am ning, Prin	vitching b plifiers, m nciple and	namics of Lase y different type ode locking, mo theory of Hole d advances in Ho	es of de pu ograp	shutters Illing, ult hy, Cha	s, gia ra sho	nt pulse ot pulses,	15	
UNIT II	harmonic parametri	Non-Linear Optics: Harmonic generation, phase matching, second harmonic generation, third harmonic generation, optical mixing, barametric generation of light,10Self focusing of light.10								
UNIT III	T IIIMulti Photon Processes:Multi quantum photoelectric effect, two photon processes, experiments in two photon processes, parametric light oscillator, frequency up-conversion, phase conjugate optics, Femtosecond laser.10									
UNIT IV	stokes & surface e	anti-stoke enhanced Raman Sp	es, Raman Raman S ectroscop	ering, Stimulate scattering, Reso Spectroscopy, H y, Spin – flip lase	nance yper	e Raman Raman	spect effec	roscopy, t, Photo	10	

- 1. Marc D. Levenson: Introduction to non-linear laser spectroscopy
- 2. B.B. Laud: Lasers and Non-linear optics
- 3. Orazio Svelto: Principles of Lasers
- 4. Wolfgang Demtröder: Laser Spectroscopy

Suggested Equivalent Online Courses:

1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

	DISCIPLINE SPECIFIC ELECTIVE (DSE A17(e4))									
Programme:	Discip	line Spe	cific Electiv	e	Ye	ar: V	Sem	este	r: X	
Course Titl Code			Credit distribution of the course Lecture Tutorial						Pre-requisite of the course	
DSE A17 (e Advanced Condensed Matter Phy IV	·	3	3	0		Accordi Univers: Ordinan	ity	Un	cording to iversity dinance	
1	ed in thi	s paper d would er		xotic solids, soft udents to purs						
UNIT				ΤΟΡΙΟ					No. of Lectures	
UNIT I	Exotic solids: Structure and symmetry of liquids, Amorphous solids, Quasicrystals, Glass transition temperature. Alloys, solid solutions, substitutional solid solutions, Kondo effect, order disorder trandformation, theory of order eutectic phase diagrams. Transition metal alloys. Heat capacity and thermal conductivity								15	
UNIT II	of amorphous solids.Soft Matter: Definition of Soft matters, Properties, phases and applications of liquid crystals, Polymer, Polymer systems and its Physical aspects, Universal Properties of a single polymer chain, Bio-polymers and applications of Polymer systems.10							10		
UNIT III	UNIT IIIThin film and Surface States: Definition and proprieties of thin films, Difference in the properties of a thin film from it'scorresponding bulk material, Boltzmann Transport equation for diffused Scattering ofelectron in the thin film, surface states, and surface reconstruction, metallic surface.10					10				
UNIT IVRelaxation and resonance phenomena: Principle of electron spin resonance, Zeeman Splitting, ESR spectrometer, relaxation, hyperfine structure, resonance. Principle of Nuclear magnetic resonance and its applications. Magnetic resonance imaging, principle and image processing.						10				

- 1. C. S. Kittel: Introduction to solid state Physics.
- 2. C. S. Kittel: Quantum theory of Solids.

- 3. Poole: Nanotechnology
- 4. K. L. Chopra: Thin Film
- 5. Steinhardt and Ostulund: The Physics of Quasicrystals
- 6. Chandrasekhar: Liquid-Crystal

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/currenthe/8

	GENERAL ELECTIVE (GE P 13(a))									
Program	me: GENER	AL ELE	ECTIVE		Ye	ar: V	Seme	ester: X		
Course Code	Fitle &	Credits	Credit dis course	tribution of the	I	Eligibility Pre-re Criteria course			isite of the	
			Lecture	Tutorial			-			
(GE P13 Medical		4	3	1		Accordi Univers Ordinan	ity	According University Ordinance	ÿ	
Course (Outcomes		L.					l .		
The cour	se content co	overs the	e concepts	of Medical Phys	sics. 7	The cour	se pro	ovides stu	dents with	
knowledg	ge of Medica	al physic	es and intr	oduces them M	[echar	nics of H	Huma	n Body, l	Physics of	
				Diagnostic X-R						
		by the co	urse will be	e of much use in	Med	ical field	and I	R&D secto		
Unit	Unit Topic							No. of		
		0.77				- • •			Lectures	
Unit I			•	tatic, Dynamic						
	-	-		ies and function						
	-	· .		ales, Clinical th edicine, Heat lo				U 1 U		
	1			e and Urinary B			ıy, 11			
	the body, I	iessuie i	II SKull, Ly		lauue				15	
Unit II	Physics of	Respirat	ory and C	ardiovascular S	vstem	. Body	as a	machine	10	
0		-	•	iteractions, Mea					15	
			0	li, Breathing me			0			
	Component	ts and fu	nctions of C	Cardiovascular s	ystem	s, work	done	by Heart,		
	Component	ts and f	low of Bl	ood, Laminar	and [Furbulen	t flov	w, blood		
				ethod of measuri						
Unit III	•		•	und/Light In Me			•			
	· · · · ·	1		tric signals from Muscles, Eye cord EMG, Normal ECG wave 15						
				diagram and working to record EMG, Normal ECG wave for ECG, Amplifier and Recording device, Block diagram						
								diagram		
TT '/ TT 7				atient monitoring				• • • • • • •		
Unit IV	Diagnostic	X-Rays	and Nuclea	ar Medicine Pro	ductio	on and pi	opert	ies of X-		

rays, Basic Diagnostic X-ray Machine, X-ray image, Live X- ray image, X-	
ray computed Tomography, Characteristics of Radio activity, Radioisotopes	
and Radio nuclides, Radioactivity sources for Nuclear medicine.	15

- 1. Medical Physics by Department of Physics, St. Joseph's College, Trichy-
- 2. Medical Physics by John R. Cameron and James G. Skofronick, John Wiley & Sons.
- 3. Hand book of Biomedical Instrumentation : R.S.Khandpur, Tata McGraw Hill Publication Co., Delhi, 1987.

Suggested Equivalent Online Courses:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

OR

	GENERAL ELECTIVE (GE P 13(b2))									
F	Programme: GENERAL ELECTIVE Year: V Semester: X									
	Course Title & Code		lits Credit distribution of the course		Elig Crit		Pre-requisite of the course			
			Lecture	Tutorial						
	(GE P13 (a)): Photonics-II	4	3	1	Univ	versity	According to University Ordinance			

Course Outcomes:

- 1. To Gain sufficient knowledge in the area of laser technology
- 2. To Classify optical fibers based on their refractive index profiles
- 3. To Examine the loss mechanisms in optical fibers and to compute various losses
- 4. To Understand the non-linear coefficient and conversion efficiency for various nonlinear phenomena
- 5. To Understand and visualise the different quantum states of light for their applications in the field of quantum technology

Unit	Topic (Theory / Experiments/hands on training)	No. of Lectu res
Unit I	Lasers: interaction of radiation and matter, Einstein coefficients, condition for amplification. Optical resonators, Condition for laser oscillation. Longitudinal and transverse modes of a laser. Some Laser	12

	Systems.	
Unit II	Fiber Optics: Light propagation in optical fibers, Attenuation and dispersion; Single-mode fibers, material dispersion. Optical fiber communication, Fiber amplifiers and lasers. Optical fibers in sensing.	12
Unit III	Electro-Optic (E.O) Effect: Phase-and amplitude modulators. E.O. effect in liquid crystals; LCDs and SLMs. Magneto-optic effect: Faraday rotation. Acousto-Optic (A.O.) Effect: Raman-Nath and Bragg diffraction; A.O. modulators and deflectors.	12
Unit IV	Nonlinear Optics: Second order and third order effects, Phase- matching schemes. Self-phase modulation and optical solitons; Cross phase modulation and four wave mixing. Stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS)	12
Unit V	Quantum Optics: Quantum states of light and their properties, Generation and detection of quantum light Entanglement and its applications: quantum computing, cryptography and teleportation.	12

- 1. Optics, Ajoy Ghatak, 6th edition, Tata McGraw Hill, (2017)
- 2. Optics, Eugene Hecht and A R Ganesan, 4th Edition, Pearson Education (2008) (Text)
- 3. An introduction to Fiber Optics, Ghatak and Thyagarajan, Cambridge University Press, 1998.
- 4. Fundamentals of Fibre Optic Telecommunication -B. P. Pal., Wiley Eastern (1994)
- 5. Fibre optic sensors principles and applications B.D.Gupta, New India Publishing, (2006).
- 6. Lasers: Fundamentals and Applications, K. Thyagarajan and Ajoy Ghatak, Springer, 2nd edition (2011)
- 7. Nonlinear optics- Robert W Boyd, Academic Press, Elsevier, Inc (Third Edition) (2008),
- 8. Physics of nonlinear optics-Guang S He and Song H Lie, world scientific , London (1999)
- 9. Quantum Optics an Introduction Mark Fox Oxford University press Press (2004)
- Optical Coherence and quantum optics, Leonard Mandel, Emil Wolf, Cambridge University Press, 2nd Edition (2013)

Programme: GENERAL ELECTIVE Year: V Semester: X									
Course Title & Code		Credits Credit distribution of the course				~ ~ ~ ~		Pre-requisite of the course	
			Lecture Tutorial						
GE P 14: Basics of Astrophysics		4 3 1		1	University		According to University Ordinance		
This cour	-			ties of stars. In action of stars and their pro-			, it pi	rovides th	e
Unit	Торіс								No. of Lecture s
Unit I	Introduction to Astronomy: History of astronomy, Overview of the night sky, basic concepts of positional astronomy: celestial sphere, astronomical coordinate systems, circumpolar stars; sidereal and solar day. Size and time						15		
Unit II	The Sun: Solar parameters, Sun's internal structure: Core, Radiative, and converctive zone, Sun's outer structure: photosphere, chromosphere, and corona, Quiet Sun: granulations, supergranulations, plages, faculae, Active Sun: Sunspots, filaments/prominences, solar flares and coronal mass ejections.15								
Unit III	Our Solar System: Overview of Solar system, Solar system planets, Formation of Solar System, Planetary Atmospheres: Structure, Composition, planet atmospheres, extrasolar planets, Earth-Moon System, Comets, Meteorites, Interplanetary dust						15		
Unit IV	Telescopes resolving p Galilean, N	and instant ower, and ewtonia	strumentat d diffractio n, Cassegra	ion : Telescope 1 on limits of telesc nian, Hubble spa 1 devices (CCDs	copes. ace te	Optical	telesc	copes:	15

1. Fundamental Astronomy, H. Karttunen et al., Springer Berlin, Heidelberg

- 2. Modern Astrophysics, B. W. Carroll and D. A. Ostlie, Addison-Wesley Publishing Co.
- 3. Introductory Astronomy and Astrophysics, M. Zeilik and S. A. Gregory, Saunders
- 4. College Publishing.
- 5. Astronomy in India: A Historical Perspective, T. Padmanabhan, Springer

- MIT Open Learning Massachusetts Institute of Technology, <u>https://openlearning.mit.edu/</u>
 National Programme on Technology Enhanced Learning (NPTEL),
- https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel,
- 4. https://www.swayamprabha.gov.in/index.php/program/current_he/8

			I	PRACTICALS					
Programme: PRACTICALS Year: V Semester: Y						(
Course Title & Code Practicals		Credits	Credit distribution of the course			Eligibility Criteria		Pre-requisite of the course	
			Practicals Tutorial						
		4	4	0	Accord Univers Ordinar		ty	Univer	According to University Ordinance
The stude physics w	ith clear un	derstand	ing of the th	lge to perform the neory behind the cialization paper	experin				
UNI F				TOPIC ced Electronics					No. of Lectures
3. 5. 6. 7. 8. 9. 10 11 12 14 15 16	Study of T 1 of 16 De Study of M Study of L Study of C Study of a 0.Study of a Master sla .Study of D	Fimer (55 coder/En Aultiplex ogic gat Comparat amplitud different ve). Digital co Aicroproo C- Basec e experin sters	ncoder ter/Demultip es (Differen or and Deco e and frequ flip- flop c ombinational cessor (8085 l Power sup nent.	D and D to A co blexer it types) oder iency modulation circuits (RS, JK, l and sequential 5) 13. Study of Se	ns andd Dk ty circuits	pe, T-1	type,	ns.	60
Li 1. 2. 3. 4. 5. 6. 7. 8.	ist of Expendent Study of E Study of c Study of c square den Study of st Study of Study of St Study of so Study of so Study of so	riments: Iubble's onstant c sity distr tar cluste Extinction ariability plar limb plar diffe	(b) Astrop law and age lensity neutric parameter ribution er from a given of stars Darkening rential rotati	e of Universe (fro ron star rs of a Neutron ven data ts	Star m	nodel v		nverse	60

- 10. Measuring the colour of star using differential photometer data
- 11. Determination of age star cluster
- 12. Determination of reddening in a star cluster.

List of Experiments: (c) High Energy Physics

- 1. Characteristic curve of a GM Detector and verification of inverse square law .
- 2. Characteristic curve of a GM Detector and Absorptioncoefficient of a using aluminum GM Detector.
- 3. Energy spectrum of gamma rays using gamma rayspectrometer.
- 4. Absorption coefficient of aluminum using gama-rayspectrometer.
- 5. Characteristics of Scintillation Detector.
- 6. Study of gama-gama unperturbed angular correlations.
- 7. Study of particle tracks using a Nuclear Emulsion Detector.
- 8. Classification of tracks in interaction with Nuclear Emulsion and determination of excitation energy.

List of Experiments: (d) Spectroscopy

1. Study of the vibrational levels of Iodine.

- 2. Evaluation of wavelength of He- Ne laser (green/ red) by constructing diffraction pattern with the help of (a) diffraction grating and (b)vernier callipers.
- 3. Measurement of absorptivity coefficient oscillator strength of a known sample using UV-Visible spectrum.
- 4. Determination of the non-radiative decay rates and intrinsic life-time of a given fluorescent molecule.
- 5. Determination of Stoke shift and change in dipole moment using Solvatochromic shift method.
- 6. Determination of the quantum yield of known samples using Steady state measurements.
- 7. To determine the slit width with the help of double slit experiment.

List of Experiments: (e) Condensed Matter Physics

- 1. Determination of elastic constant of crystals by optical methods.
- 2. Study of fluorescence spectra of a given compound.
- 3. Study of colour centers.
- 4. Determination of lattice parameters using powder method.
- 5. Determination of hall coefficient using Hall effect.
- 6. Determination of Energy gap of a semiconductor by four probe method.